
Polynomial-time Local Improvement Algorithm for

Consecutive Block Minimization

S. Haddadi1, S. Chenche1, M. Cheraitia1, and F. Guessoum1

LabSTIC
8 Mai 1945 University

BP 401, 24000 Guelma, Algeria
http://www.univ-guelma.dz/recherche/labs/labstic/index.html

salim.haddadi@yahoo.com

sara.chenche@hotmail.fr

meryem.cheraitia@hotmail.fr

fatima guessoum@yahoo.fr

1 Introduction

Given a binary matrix, a block of consecutive ones (bco for short) is any maximal sequence of
consecutive ones occurring in the same row. Consecutive block minimization (CBM) seeks for a
permutation of the columns of the binary matrix so as to minimize the number of bco’s. CBM
is well known to be NP-hard. In view of this negative result, it would be necessary for dealing
with the large instances arising in practice, to adopt a heuristic approach. This is what we do by
proposing a polynomial-time local improvement algorithm. An empirical analysis of the algorithm
is performed on a large set of randomly generated instances, as well as on five real-world instances.

2 The local improvement heuristic

Regarding CBM, we are not confronted with any “feasibility” problem. We are just seeking a
permutation of the columns of the binary matrix that minimizes the number of bco’s, and any
arbitrary permutation can serve as a starting point for improvement. Let us prove some preliminary
lemmas.

Lemma 1. Let B be a binary m× 3-matrix. The number of occurrences of the row sequences 101
or 010 is

k=m
∑

k=1

(

Bk
2 −Bk

1 ×Bk
2 −Bk

2 ×Bk
3 + Bk

1 ×Bk
3

)

(1)

Lemma 2. If we insert column j between the columns i and i + 1 in a binary m× n-matrix B we
create δ new bco’s where

δ =

k=m
∑

k=1

(

Bk
j −Bk

i ×Bk
j −Bk

j ×Bk
i+1 + Bk

i ×Bk
i+1

)

(2)

Lemma 3. If we remove column j from between the columns j − 1 and j + 1 in B we remove δ

bco’s where

δ =

k=m
∑

k=1

(

Bk
j −Bk

j−1 ×Bk
j −Bk

j ×Bk
j+1 + Bk

j−1 ×Bk
j+1

)

(3)

We consider two different ways for improving π (by decreasing the number of bco’s): either by
interchanging two distinct columns or by shifting a single column.



2 Haddadi, Chenche, Cheraitia and Guessoum

2.1 Improvement by interchange

Suppose that we are presently inspecting the matrix Aπ associated to some permutation π such
that the number of bco’s is σ. We consider the neighborhood N (π) to be the set of all the
permutations that result from π by interchanging two columns. We explore N (π) searching for
a permutation giving a smaller number of bco’s. If no such permutation exists, the procedure
ends. When an improvement δ is achieved via an interchange of columns π (i) and π (j) , i 6= j

(call this new permutation π′), we update σ ←− σ − δ, π′ (i) ←− π (j) , π′ (j) ←− π (i), and
π′ (k)←− π (k) , k 6= i, k 6= j. The entire process is repeated with π′.

Suppose that we interchange columns π (i) and π (i + 1). Consider first the special case where
π (i) and π (j) are adjacent (i.e. j = i + 1).

Lemma 4. There is an improvement by interchanging columns π (i) and π (i + 1) if and only if
δ > 0 where δ is computed below. Furthermore, the resulting number of bco’s by interchanging the
two columns is σ − δ.

δ+ =

k=m
∑

k=1

(

Ak
π(i−1) ×Ak

π(i+1) + Ak
π(i) ×Ak

π(i+2)

)

(4)

δ− =

k=m
∑

k=1

(

Ak
π(i−1) ×Ak

π(i) + Ak
π(i+1) ×Ak

π(i+2)

)

(5)

δ = δ+ − δ− (6)

Consider now the general case where columns π (i) and π (j) are non adjacent (i.e. there exists
at least one distinct column separating them).

Lemma 5. There is an improvement by interchanging non adjacent columns π (i) and π (j) if and
only if δ > 0 where δ is computed below. Furthermore, the resulting number of bco’s is σ − δ.

δ+
1 =

k=m
∑

k=1

(

Ak
π(i−1) ×Ak

π(j) + Ak
π(j) ×Ak

π(i+1)

)

(7)

δ+
2 =

k=m
∑

k=1

(

Ak
π(j−1) ×Ak

π(i) + Ak
π(i) ×Ak

π(j+1)

)

(8)

δ−1 =

k=m
∑

k=1

(

Ak
π(i−1) ×Ak

π(i) + Ak
π(i) ×Ak

π(i+1)

)

(9)

δ−2 =

k=m
∑

k=1

(

Ak
π(j−1) ×Ak

π(j) + Ak
π(j) ×Ak

π(j+1)

)

(10)

δ = δ+
1 + δ+

2 − δ−1 − δ−2 (11)

Lemma 6. The complexity of the interchange procedure is O
(

mn2 (f −m)
)

where f is the number
of nonzero entries in A.

Unfortunately, we cannot take advantage of the sparsity of the binary matrix as we may pre-
sume. The 0’s are as important as the 1’s for the computations in (4-6) and (7-10).

2.2 Improvement by shifting

We consider the neighborhood N ′ (π) to be the set of all the permutations that result from π by
shifting a single column, which means that the column in question leaves its position and is inserted
elsewhere between two other columns. The set N ′ (π) is scanned searching for a permutation giving
a smaller number of bco’s. If no such permutation exists, the procedure ends. Suppose that an
improvement δ is achieved by shifting column π (i), and let π′ be the resulting permutation. In
the case of shifting, the necessary updates are a bit trickier. They depend on whether the value of



Polynomial-time Local Improvement Algorithm for CBM 3

π (i) is less or greater than its future position since we have to move several columns. The detailed
updates are postponed until the statement of the pseudo-code. When all the necessary updates
are performed, we repeat the procedure by considering π′. The proofs of the remaining claims are
similar to the proofs of the previous section.

If π (i) > π (j), we shift π (i) between columns π (j − 1) and π (j) (i.e. π (i) is removed from
between columns π (i− 1) and π (i + 1) and is inserted between columns π (j − 1) and π (j)).

Lemma 7. There is an improvement by shifting column π (i) between columns π (j − 1) and π (j)
if and only if δ > 0 where δ is computed in (12-14)

δ+ =

k=m
∑

k=1

(

−Ak
π(i−1) ×Ak

π(i) −Ak
π(i) ×Ak

π(i+1) + Ak
π(i−1) ×Ak

π(i+1)

)

(12)

δ− =
k=m
∑

k=1

(

−Ak
π(j−1) ×Ak

π(i) −Ak
π(i) ×Ak

π(j) + Ak
π(j−1) ×Ak

π(j)

)

(13)

δ = δ+ − δ− (14)

If π (i) < π (j), we shift π (i) between columns π (j) and π (j + 1).

Lemma 8. There is an improvement by shifting column π (i) between columns π (j) and π (j + 1)
if and only if δ > 0 where δ is computed in (15-17)

δ+ =

k=m
∑

k=1

(

−Ak
π(i−1) ×Ak

π(i) −Ak
π(i) ×Ak

π(i+1) + Ak
π(i−1) ×Ak

π(i+1)

)

(15)

δ− =

k=m
∑

k=1

(

−Ak
π(j) ×Ak

π(i) −Ak
π(i) ×Ak

π(j+1) + Ak
π(j) ×Ak

π(j+1)

)

(16)

δ = δ+ − δ− (17)

Invoking similar arguments as previously, we prove that the complexity of the shifting procedure
is O

(

mn2 (f −m)
)

.

3 Computational experience

We experimented the local-improvement heuristic on a large number of real-world, as well as ran-
domly generated, instances. Computational experience shows that the proposed algorithm consti-
tutes a viable heuristic method for CBM, especially in the lack of existing methods. One direction
for future research emerges. Using the two local improvement procedures, the design of a meta-
heuristic can help escaping the local optimum and continuing the improvement process.


