Polynomial-time Local Improvement Algorithm for Consecutive Block Minimization

S. Haddadi ${ }^{1}$, S. Chenche ${ }^{1}$, M. Cheraitia ${ }^{1}$, and F. Guessoum ${ }^{1}$
LabSTIC
8 Mai 1945 University
BP 401, 24000 Guelma, Algeria
http://www.univ-guelma.dz/recherche/labs/labstic/index.html
salim.haddadi@yahoo.com
sara. chenche@hotmail.fr
meryem.cheraitia@hotmail.fr
fatima_guessoum@yahoo.fr

1 Introduction

Given a binary matrix, a block of consecutive ones (bco for short) is any maximal sequence of consecutive ones occurring in the same row. Consecutive block minimization (CBM) seeks for a permutation of the columns of the binary matrix so as to minimize the number of bco's. CBM is well known to be NP-hard. In view of this negative result, it would be necessary for dealing with the large instances arising in practice, to adopt a heuristic approach. This is what we do by proposing a polynomial-time local improvement algorithm. An empirical analysis of the algorithm is performed on a large set of randomly generated instances, as well as on five real-world instances.

2 The local improvement heuristic

Regarding CBM, we are not confronted with any "feasibility" problem. We are just seeking a permutation of the columns of the binary matrix that minimizes the number of bco's, and any arbitrary permutation can serve as a starting point for improvement. Let us prove some preliminary lemmas.

Lemma 1. Let B be a binary $m \times 3$-matrix. The number of occurrences of the row sequences 101 or 010 is

$$
\begin{equation*}
\sum_{k=1}^{k=m}\left(B_{2}^{k}-B_{1}^{k} \times B_{2}^{k}-B_{2}^{k} \times B_{3}^{k}+B_{1}^{k} \times B_{3}^{k}\right) \tag{1}
\end{equation*}
$$

Lemma 2. If we insert column j between the columns i and $i+1$ in a binary $m \times n$-matrix B we create δ new bco's where

$$
\begin{equation*}
\delta=\sum_{k=1}^{k=m}\left(B_{j}^{k}-B_{i}^{k} \times B_{j}^{k}-B_{j}^{k} \times B_{i+1}^{k}+B_{i}^{k} \times B_{i+1}^{k}\right) \tag{2}
\end{equation*}
$$

Lemma 3. If we remove column j from between the columns $j-1$ and $j+1$ in B we remove δ bco's where

$$
\begin{equation*}
\delta=\sum_{k=1}^{k=m}\left(B_{j}^{k}-B_{j-1}^{k} \times B_{j}^{k}-B_{j}^{k} \times B_{j+1}^{k}+B_{j-1}^{k} \times B_{j+1}^{k}\right) \tag{3}
\end{equation*}
$$

We consider two different ways for improving π (by decreasing the number of bco's): either by interchanging two distinct columns or by shifting a single column.

2.1 Improvement by interchange

Suppose that we are presently inspecting the matrix A_{π} associated to some permutation π such that the number of bco's is σ. We consider the neighborhood $\mathcal{N}(\pi)$ to be the set of all the permutations that result from π by interchanging two columns. We explore $\mathcal{N}(\pi)$ searching for a permutation giving a smaller number of bco's. If no such permutation exists, the procedure ends. When an improvement δ is achieved via an interchange of columns $\pi(i)$ and $\pi(j), i \neq j$ (call this new permutation π^{\prime}), we update $\sigma \longleftarrow \sigma-\delta, \pi^{\prime}(i) \longleftarrow \pi(j), \pi^{\prime}(j) \longleftarrow \pi(i)$, and $\pi^{\prime}(k) \longleftarrow \pi(k), k \neq i, k \neq j$. The entire process is repeated with π^{\prime}.

Suppose that we interchange columns $\pi(i)$ and $\pi(i+1)$. Consider first the special case where $\pi(i)$ and $\pi(j)$ are adjacent (i.e. $j=i+1$).

Lemma 4. There is an improvement by interchanging columns $\pi(i)$ and $\pi(i+1)$ if and only if $\delta>0$ where δ is computed below. Furthermore, the resulting number of bco's by interchanging the two columns is $\sigma-\delta$.

$$
\begin{align*}
\delta^{+} & =\sum_{k=1}^{k=m}\left(A_{\pi(i-1)}^{k} \times A_{\pi(i+1)}^{k}+A_{\pi(i)}^{k} \times A_{\pi(i+2)}^{k}\right) \tag{4}\\
\delta^{-} & =\sum_{k=1}^{k=m}\left(A_{\pi(i-1)}^{k} \times A_{\pi(i)}^{k}+A_{\pi(i+1)}^{k} \times A_{\pi(i+2)}^{k}\right) \tag{5}\\
\delta & =\delta^{+}-\delta^{-} \tag{6}
\end{align*}
$$

Consider now the general case where columns $\pi(i)$ and $\pi(j)$ are non adjacent (i.e. there exists at least one distinct column separating them).

Lemma 5. There is an improvement by interchanging non adjacent columns $\pi(i)$ and $\pi(j)$ if and only if $\delta>0$ where δ is computed below. Furthermore, the resulting number of bco's is $\sigma-\delta$.

$$
\begin{align*}
\delta_{1}^{+} & =\sum_{k=1}^{k=m}\left(A_{\pi(i-1)}^{k} \times A_{\pi(j)}^{k}+A_{\pi(j)}^{k} \times A_{\pi(i+1)}^{k}\right) \tag{7}\\
\delta_{2}^{+} & =\sum_{k=1}^{k=m}\left(A_{\pi(j-1)}^{k} \times A_{\pi(i)}^{k}+A_{\pi(i)}^{k} \times A_{\pi(j+1)}^{k}\right) \tag{8}\\
\delta_{1}^{-} & =\sum_{k=1}^{k=m}\left(A_{\pi(i-1)}^{k} \times A_{\pi(i)}^{k}+A_{\pi(i)}^{k} \times A_{\pi(i+1)}^{k}\right) \tag{9}\\
\delta_{2}^{-} & =\sum_{k=1}^{k=m}\left(A_{\pi(j-1)}^{k} \times A_{\pi(j)}^{k}+A_{\pi(j)}^{k} \times A_{\pi(j+1)}^{k}\right) \tag{10}\\
\delta & =\delta_{1}^{+}+\delta_{2}^{+}-\delta_{1}^{-}-\delta_{2}^{-} \tag{11}
\end{align*}
$$

Lemma 6. The complexity of the interchange procedure is $O\left(m n^{2}(f-m)\right)$ where f is the number of nonzero entries in A.

Unfortunately, we cannot take advantage of the sparsity of the binary matrix as we may presume. The 0's are as important as the 1's for the computations in (4-6) and (7-10).

2.2 Improvement by shifting

We consider the neighborhood $\mathcal{N}^{\prime}(\pi)$ to be the set of all the permutations that result from π by shifting a single column, which means that the column in question leaves its position and is inserted elsewhere between two other columns. The set $\mathcal{N}^{\prime}(\pi)$ is scanned searching for a permutation giving a smaller number of bco's. If no such permutation exists, the procedure ends. Suppose that an improvement δ is achieved by shifting column $\pi(i)$, and let π^{\prime} be the resulting permutation. In the case of shifting, the necessary updates are a bit trickier. They depend on whether the value of
$\pi(i)$ is less or greater than its future position since we have to move several columns. The detailed updates are postponed until the statement of the pseudo-code. When all the necessary updates are performed, we repeat the procedure by considering π^{\prime}. The proofs of the remaining claims are similar to the proofs of the previous section.

If $\pi(i)>\pi(j)$, we shift $\pi(i)$ between columns $\pi(j-1)$ and $\pi(j)$ (i.e. $\pi(i)$ is removed from between columns $\pi(i-1)$ and $\pi(i+1)$ and is inserted between columns $\pi(j-1)$ and $\pi(j))$.

Lemma 7. There is an improvement by shifting column $\pi(i)$ between columns $\pi(j-1)$ and $\pi(j)$ if and only if $\delta>0$ where δ is computed in (12-14)

$$
\begin{align*}
\delta^{+} & =\sum_{k=1}^{k=m}\left(-A_{\pi(i-1)}^{k} \times A_{\pi(i)}^{k}-A_{\pi(i)}^{k} \times A_{\pi(i+1)}^{k}+A_{\pi(i-1)}^{k} \times A_{\pi(i+1)}^{k}\right) \tag{12}\\
\delta^{-} & =\sum_{k=1}^{k=m}\left(-A_{\pi(j-1)}^{k} \times A_{\pi(i)}^{k}-A_{\pi(i)}^{k} \times A_{\pi(j)}^{k}+A_{\pi(j-1)}^{k} \times A_{\pi(j)}^{k}\right) \tag{13}\\
\delta & =\delta^{+}-\delta^{-} \tag{14}
\end{align*}
$$

If $\pi(i)<\pi(j)$, we shift $\pi(i)$ between columns $\pi(j)$ and $\pi(j+1)$.
Lemma 8. There is an improvement by shifting column $\pi(i)$ between columns $\pi(j)$ and $\pi(j+1)$ if and only if $\delta>0$ where δ is computed in (15-17)

$$
\begin{align*}
\delta^{+} & =\sum_{k=1}^{k=m}\left(-A_{\pi(i-1)}^{k} \times A_{\pi(i)}^{k}-A_{\pi(i)}^{k} \times A_{\pi(i+1)}^{k}+A_{\pi(i-1)}^{k} \times A_{\pi(i+1)}^{k}\right) \tag{15}\\
\delta^{-} & =\sum_{k=1}^{k=m}\left(-A_{\pi(j)}^{k} \times A_{\pi(i)}^{k}-A_{\pi(i)}^{k} \times A_{\pi(j+1)}^{k}+A_{\pi(j)}^{k} \times A_{\pi(j+1)}^{k}\right) \tag{16}\\
\delta & =\delta^{+}-\delta^{-} \tag{17}
\end{align*}
$$

Invoking similar arguments as previously, we prove that the complexity of the shifting procedure is $O\left(m n^{2}(f-m)\right)$.

3 Computational experience

We experimented the local-improvement heuristic on a large number of real-world, as well as randomly generated, instances. Computational experience shows that the proposed algorithm constitutes a viable heuristic method for CBM, especially in the lack of existing methods. One direction for future research emerges. Using the two local improvement procedures, the design of a metaheuristic can help escaping the local optimum and continuing the improvement process.

