
Application of parallel metaheuristics to an execution

time-power consumption bi-objective problem

José M. Cruz-Zapata, Domingo Giménez, and Daniel Ruiz-Garćıa

Departamento de Informática y Sistemas, Universidad de Murcia, Spain.
{josemanuel.cruz,domingo,daniel.ruiz4}@um.es

1 Introduction

This work analyses the solution of a bi-objective optimization problem in which the execution
time and the energy consumption of an algorithm in a heterogeneous system are minimized. The
processes are assigned to the processors in the system, one process per processor. Each processes-
to-processors mapping has associated theoretical models of the execution time and of the energy
consumption [2, 3], and the bi-objective execution time-energy consumption problem is to obtain
mappings which give pairs (time,energy) at the Pareto front. Genetic algorithms and Particle swarm
optimization methods for the problem are developed, with sequential, shared-memory, message-
passing and hybrid versions.

The algorithm used as test case is a simple master-slave scheme, and the simulated compu-
tational system presents heterogeneity in computation, communication and energy consumption.
While the algorithmic scheme, the theoretical models of the time and energy, and the computa-
tional system simulated are very simple, the computational technique used to tackle the problem
is general, and can be similarly applied in other more complex and realistic situations.

2 Metaheuristics for the bi-objective problem

A mapping is determined by a permutation π = (π0, π1, . . . , πp−1) of (0, 1, . . . , p− 1), where πi

represents the processor to which process i is assigned. Given a mapping π, the time line of
the execution of the algorithm (the p processes) in the particular system (the p processors with
the tables representing time and energy consumptions) is simulated, and the modeled execution
time and energy consumption corresponding to π are computed from this simulation. The energy
consumption is closely related to the execution time, which means normally low execution times
give low energy consumptions, which produces Pareto fronts with few pairs. The functions in the
metaheuristics are implemented in the traditional way, and some considerations must be taken into
account for the adaptation to the problem.

In a Genetic algorithm the individuals to be combined are selected with a roulette method with
more probability for individuals with low values of time and energy, for which the probability of
each individual is proportional to the inverse of the addition of time and energy. The elements
generated are not, in general, permutations, and they are modified to obtain valid individuals. To
do so, the repeated values in the element are substituted by values not in the element, which are
selected randomly.

Particle swarm algorithms work with populations or sets of particles whose evolution depends
on information local to each particle and on global information common to all the particles. Each
particle is in a position in the search space, with the position given by the permutation representing
the particle, and has a movement speed, which is determined by its position with respect to the
best local and global positions.

Parallel versions are developed with an island scheme [1, 4]. In the OpenMP versions, the pop-
ulation of size |S| is divided in subpopulations of |S|/t individuals (t threads are considered). Each
thread works independently during g iterations. After g iterations the threads share information
from the subpopulations. Each thread stores in mutual exclusion the solutions with the lowest
execution time and the lowest energy consumption from all the pairs at its Pareto front. Each
thread includes in its subpopulation pairs from this shared structure which are better in time and
energy than some pair in its subpopulation. When the iterations finish, the Pareto fronts in the
different threads are combined to obtain the final Pareto front. The MPI versions also use the

2 José M. Cruz-Zapata, Domingo Giménez and Daniel Ruiz-Garćıa

island model and have a similar structure similar to that of the corresponding OpenMP version,
the only difference being the structure with the best elements, which is now replicated.

Experiments with the two metaheuristics give similar results in relation to the goodness of
the solutions obtained, and also satisfactory speed-ups for the parallel versions. Figure 1 shows
the evolution of the Pareto front when the sequential Genetic algorithm is applied to a problem
with 20 processes. A normal behavior is observed, with improvement of the Pareto front when the
population size or the number of iterations increase, and with fluctuations due to the randomness of
the algorithm. The speed-up achieved with the parallel implementations of the Genetic algorithm
when varying the number of processes and threads is shown in Figure 2. The MPI version gives
higher speed-up, which is caused by some parts of the algorithm with non linear cost, which
produces an important reduction of the execution time when working with small populations.

Fig. 1: Evolution of the Pareto front for the sequential Genetic algorithm. A problem with 20 processes is
considered. For a population with 1000 individuals when the number of iterations varies (left). With the
number of iterations fixed at 1000 and varying the population size (right).

Fig. 2: Speed-up with the Genetic algorithm, for a problem with 40 tasks, 1000 iterations and varying the
population size. In a NUMA system with 24 cores (left). In two hexa-cores (right).

Acknowledgements. This work was supported by the Spanish MINECO, as well as European
Commission FEDER funds, under grant TIN2012-38341-C04-03.

References

1. E. Alba. Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, 2005.
2. F. Almeida, D. González, and L. M. Moreno. The master-slave paradigm on heterogeneous systems: A

dynamic programming approach for the optimal mapping. Journal of Systems Architecture, 52(2):105–
116, 2006.

3. A. Cabrera, F. Almeida, V. Blanco Pérez, and D. Giménez. Analytical modeling of the energy con-
sumption for the high performance Linpack. In PDP, pages 343–350, 2013.

4. M.-S. Mezmaz, Y. Kessaci, Y. C. Lee, N. Melab, E.-G. Talbi, A. Y. Zomaya, and D. Tuyttens. A par-
allel island-based hybrid genetic algorithm for precedence-constrained applications to minimize energy
consumption and makespan. In GRID, pages 274–281, 2010.

