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1 Introduction and description of the problem

In most inventory management problems, two types of decision have to be taken at the manufac-
turer level: when and how much to order to suppliers [2]. It is assumed that setup, carrying and
shortage costs are encountered during the year. Usually, inventory management models are charac-
terized by stochastic demand and constant lead times. In contrast, this paper, which generalizes the
approach proposed in [3], deals with the situation where there is a constant known demand rate,
but probabilistic lead times whose probability distributions change seasonally. Moreover, the lead
times for different orders are assumed to be independent, thus crossovers can occur. Therefore, the
interactive effects between different cycles (a cycle is defined as the time between two consecutive
orders) due to the occurrence of shortages are difficult to model. Consequently, even if the annual
approximated costs can be analytically computed with a mathematical function f , simulation (of
the lead times) is the only way to compute the annual actual costs F of a solution. This study
is motivated by the management of raw material at a sawmill in North America. Without loss of
generality, consider a 52-weeks planning horizon (a time period is a week). A solution (P, S) can be
modeled by two vectors P and S defined as follows: Pt = 1 if an order occurs at the beginning of
period t, and Pt = 0 otherwise; St is the order-up-to-level of available inventory at the beginning
of period t if Pt = 1, and St = 0 if Pt = 0. The following reasonable assumptions are made: (A1)
it is possible to analytically approximate the annual costs with a function f(P, S) relying only
on P , S and the probability distributions of the lead times; (A2) it is possible to compute the
F (P, S) (i.e. the annual actual costs) with a simulation tool; (A3) based on f , it is possible to
analytically compute S from P with a so-called Compute(S | P ) procedure. It means that anytime
P is modified, its associated S vector is immediately updated with Compute(S | P ).

2 Design of a metaheuristic

Due to the non-stationarity in the lead time distribution, the problem is combinatorial in nature
(choice of the Pt’s and the St’s). Moreover, simulation is required to compute the actual cost of a
solution. Thus, it makes sense to use (meta)heuristics. The reader is supposed to be familiar with
the metaheuristic literature and is referred to [1, 4] for more information on it. The solution space

X(N) is defined as the set of all the solutions (P, S) with
∑52

t=1 Pt = N . The general approach
consists in providing good solutions for different solutions spaces, starting with U(N) orders and
ending with L(N) orders, where U(N) ≤ 52 (resp. L(N) ≥ 1) is an upper (resp. a lower) bound
on N . At the end, the best solution (over all the considered X(N)’s) is returned to the user.
For a fixed solution space X(N), the following steps are performed: (S1) generate an initial solution
(P, S) with N orders as equi-spaced as possible; (S2) based on f , try to reduce the approximate
costs of (P, S) with a tabu search TSf(P, S) working on P ; (S3) based on F and without changing
P , apply a descent local search DLSF (S | P ) working on S (a move consists in augmenting or
reducing one of the St’s, by one unit). In TSf(P, S), a move consists in putting an order earlier or
later, but without changing the global sequence of orders. At each iteration, the best non tabu move
is performed. If an order is moved, then it is forbidden (tabu) to move it again for tab (parameter
depending on N) iterations. The stopping condition is a maximum number Iter (parameter) of
iterations without improvement of the best visited solution.
An extension of TSf(P, S), denoted TSM

f (P, S), is now proposed for step (S2). Instead of only
providing a single solution, an idea is to provide a set M containing m (parameter) promising
local optima (promising according to the quality function f and a diversity function Div(M)).
To achieve this, additional ingredients are now defined. The distance between P and P ′ is defined
as Dist(P, P ′) =

∑52
t=1 | Pt − P ′

t |. The average distance between P and a set M of solutions is
defined as Dist(P,M) = 1

|M|

∑
P ′∈M Dist(P, P ′). The diversity of a set M of solution is computed
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as Div(M) = 1
|M|

∑
P∈M Dist(P,M − {P}). M is initialized with solutions randomly generated.

Let P be a solution found by tabu search at the end of an iteration. The key idea is the fol-
lowing: P should replace a bad (according to f) solution of M which poorly contributes to its
diversity Div(M). More precisely, let M ′ be the subset of M containing the m′ (parameter) worst
solutions of M , for which the worst value is f∗∗. Let P (div) be the solution of M ′ such that
P (div) = argminP ′∈M ′ Dist(P ′,M − {P ′}). Then, if f(P ) > f∗∗, M is not updated. Otherwise, if
Dist(P (div),M − {P (div)}) < Dist(P,M − {P (div)}), then P replaces P (div).
The resulting metaheuristic is summarized in Figure 1. The returned solution is (P ∗, S∗) with an
actual cost of F ∗, which is the best solution visited in all the considered solution spaces.

Algorithm 1 General approach

Initialization: set F ∗ = ∞ and N = UB(N)
While N ≥ LB(N), do

1. generate an initial solution P with N orders as equi-spaced as possible
2. apply TSf (P, S) or TS

M
f (P, S), and let M = {P (1), . . . , P (m)} be the resulting set of local optima

according to f (m = 1 if TSf (P, S) is used)
3. for i = 1 to m, do: apply DLSF (S | P ) on (P (i), S(i))
4. set (P, S) = argmini∈{1,...,m} F (P (i), S(i))
5. if F (P, S) < F ∗, set (P ∗, S∗) = (P, S), and F ∗ = F (P, S)
6. reduce N by one unit

3 Results and conclusion

The experiments were performed on a PC Pentium 4 (1.6 GHz/1 Go RAM). The parameters Iter,
m and m′ were respectively tuned to 1000, 10, 3. As the proposed method has to plan the orders
for a whole year, the computing time is not an issue (but all the proposed methods never exceed
an hour of computation). Each instance is characterized by its cost parameters (the fixed setup
cost A per order, the inventory cost h per unit per period, the shortage cost B per missing unit).
For each period t is known the minimum (resp. most likely and maximum) lead time at (resp.
mt and bt). From these three values, discrete triangular distributions can be easily constructed.
Two types T1 and T2 of instances were generated according to two sets of lead time distributions,
with 24 instances per type (which differ according to A, h and B). Set T1 is based on realistic
data from the sawmill context, and is characterized by at ∈ {2, 5}, mt ∈ {3, 7}, and bt ∈ {6, 13}.
Set 2, which represents a form of sensitivity analysis (the variation of the lead times is larger), is
characterized by at ∈ {1, 8}, mt ∈ {2, 10}, and bt ∈ {5, 16}. In Table 1 is provided a summary
of the average percentage improvements (over a basic constructive heuristic based on an EOQ
analysis) provided by the general proposed approach relying on DLSf (P, S) (where a descent local
search is performed at step (S2) instead of tabu search), TSf(P, S) and TSM

f (P, S), respectively.
The results are shown for three levels of B and for the two sets T1 and T2. Unsurprisingly, the
potential benefits of the three methods augments as the seasonality is increased. One can observe
that TSM

f (P, S) outperforms TSf(P, S), and both methods are better than DLSf (P, S).

Method Set T1 Set T2

Small B Average B Large B Small B Average B Large B

DLSf (P, S) 1.39 1.52 1.61 3.75 3.58 3.47
TSf (P, S) 1.72 1.82 2.01 4.15 4.05 3.74

TSM
f (P, S) 1.82 1.86 2.16 4.18 4.06 3.79

Table 1. Compact comparative results
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