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1 Introduction and presentation of problem (P)

In the considered job scheduling problem (P), the production environment consists in a set of
parallel and identical machines. Given a set J of n jobs, a subset J ′ ⊆ J must be selected and
scheduled before a global deadline D. The non selected jobs are rejected. With each job j is
associated an integer processing time pj and a gain gj (incurred if j is performed). Preemptions
are allowed at integer points in time. Some pairs of jobs are incompatible, i.e. it should be avoided
to perform them at common time slots. A conflict occurs if two incompatible jobs are processed
during a common time slot (there can be more than one conflict between two jobs). The problem is
to find a solution s where each performed job j is given pj time slots, and such that the number of
conflicts C(s) does not exceed a given upper bound K. Two objectives f1 (to be maximized) and
f2 (to be minimized) are considered in a lexicographical order (i.e. f1 is infinitely more important
than f2): f1(s) is the sum of the gains of completely performed jobs, and f2(s) is the number of
parallel machines used in s.
(P) has applications in fast moving consumer good companies. Scheduling with rejections is par-
ticularly relevant in make-to-order production environments [4]. Preemptions are used in practical
situations where setup times are negligible (e.g. in automated production). Incompatibilities occur
when scarce resources are involved in the production system [1]. More precisely, two jobs which
necessitate a common scarce resource cannot be performed simultaneously (they are incompatible).
However, we assume in (P) that some additional resources can be mobilized up to a certain budget,
and thus up to K conflicts are allowed. Papers on scheduling with incompatibilities include [2, 3,
5] and are often related to the graph multi-coloring problem. In particular, (P) is a generalization
of the well-known and NP-hard k-coloring problem (if K = 0, D = k, and pj = 1 for each j).

2 Solution methods for (P)

Five approaches are proposed: GR (a greedy algorithm), DLS (a descent local search), TS (a tabu
search), TSR (a tabu search with restarts), and DRM (a deconstruction-reconstruction meta-
heuristic). The time limit of each algorithm is T = 60 · n seconds. Note that if an algorithm stops
before T , it is restarted, and the best solution is returned to the user.
GR starts from an empty solution and selects the next job to schedule with the largest gain gj (ties
are broken randomly). Aj denotes the set of feasible time slots for job j (i.e. not used by any job
incompatible with j). If pj −|Aj | > K−C(s), job j is rejected. Otherwise, pj slots are sequentially
assigned to j and two situations can occur at each step: (1) if pj − |Aj | < 0, the slot minimizing
f2 is chosen; (2) if pj − |Aj | ≤ K −C(s), the slot minimizing the number of additional conflicts is
selected (but j is rejected if more than K conflicts are created).
In DLS, a move (to generate a neighbor solution from the current solution) consists in rescheduling
a job j. The way to reassign pj slots to j depends on Aj . If Aj ≥ pj , pj slots are sequentially chosen
in Aj while minimizing f2. Otherwise, the pj slots are given one by one, by assigning at each step
the slot minimizing the number of additional conflicts. Then, to maintain feasibility, some conflicts
are removed with the following Repair method: while C(s) > K, the job involved in the largest
number of conflicts is rejected (break ties with the gains). In TS, when a job j is rescheduled, it
cannot be rescheduled for tab = 10 iterations. In TSR, TS is restarted every I = 100 iterations.
DRM [6] is a population based meta-heuristic relying on powerful local search techniques, where at
each generation, a solution of the population is first deconstructed, then reconstructed, and finally
improved. To tackle (P), a population Pop with 10 solutions is used. It is initialized by generating
10 random solutions as follows. First, all the jobs of J are scheduled randomly, then, feasibility is
reestablished with Repair, and finally the solution is improved with TS during I = 100 iterations.
DRM uses a deconstruction parameter q which is initially set to qmin = n/20 and cannot exceed
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qmax = n/3. Then, while T is not reached, the below seven steps are performed, where sb and sw

respectively denotes the best and worst solution of Pop.

(1) Select the least frequently chosen solution s in the population Pop.
(2) Deconstruction: reject q jobs in s, chosen randomly.
(3) Reconstruction: schedule some jobs (chosen randomly) until C(s) = q + K. The slots are

assigned one by one to each job, while minimizing the number of conflicts (break ties with
f2). If ties occur again, they are broken with information from Pop: the slot t maximizing∑

i∈Jt
Sim(i, j) is chosen, where Jt is the set of jobs processed during slot t, and Sim(i, j) is

the number of slots where jobs i and j are performed simultaneously in the solutions of Pop.
(4) Reestablish feasibility: while s has more than K conflicts, reject the job j with the smallest

ratio gj/Cj(s), where Cj(s) is the number of conflicts associated with job j in s.
(5) Local search: apply TS during I iterations, and denote s′ the resulting solution.
(6) Update Pop: if s′ is better than sw, replace sw with s′ in Pop.
(7) Update q: if s′ is better than sb, set q = qmin; otherwise set q = 1.05 · q (if allowed).

On the one hand, DRM uses elements of strategic oscillation methods (see steps (2) and (3)): it
explores unfeasible solutions but the distance from the feasibility border is controlled, as K + q
conflicts are allowed. On the other hand, DRM has features from variable neighborhood search
(see steps (2) and (7)): it generates a deconstructed solution at a certain distance q from s, and q
is updated according to the improvement or not of the best encountered solution.

3 Experiments

An instance (n, τ) is defined by its number n of jobs and its rate τ of allowed conflicts, from
which we deduce K = τ · n. 15 instances were generated, with n ∈ {50, 100, 200} and τ ∈
{0, 0.02, 0.04, 0.1, 0.2}. Two jobs are incompatible with probability 0.5. Each pj is randomly chosen
in interval [1, 10]. The gain gj is related to pj as follows: a random number β is first chosen in
interval [1, 20], and we set gj = β · pj . Finally, the deadline D was set small enough to prevent
the scheduling of all jobs. The algorithms were implemented in C++ and executed on a computer
with a processor Intel Quad-core i7 2.93 GHz with 8 GB of DDR3 RAM memory. 10 runs per
instance were performed with T = 60 · n seconds. Aggregated results are given in Table 1, which
shows for each method the average percentage gap according to the best ever found value for each
objective (f1, f2). TS outperforms GR, which is slightly better than DLS: the obtained f1 gaps
are respectively 5.46%, 8.68% and 9.32%. The deconstruction and reconstruction steps in DRM
are efficient, as the DRM gap is 2.29% for f1 versus 6.87% for TSR. It was observed that DRM
obtained the best results for 13 instances. Note that the smaller is the f1 gap, the larger is the f2
gap, as f1 and f2 are conflicting objectives.

GR DLS TS TSR DRM

( 8.68, 5.01 ) ( 9.32, 5.14 ) ( 5.46, 9.65 ) ( 6.87, 8.04 ) ( 2.29, 14.89 )

Table 1. Aggregated results obtained by the proposed methods.
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