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1 Presentation of problem (P)

Nowadays, new constraints known as smoothing constraints are attracting a growing attention in
the area of job scheduling [1] and in particular for car sequencing problems, where cars must be
scheduled before production in an order respecting various constraints (colors, optional equipment,
due dates, etc.), while avoiding overloading some important resources. For the car plant, balanc-
ing between optional equipment and colors allows to respect customers deadlines and to prevent
overloading some resources (machines or employees).

In 2005, the car manufacturer Renault proposes a car sequencing problem through the ROADEF
2005 Challenge [3], with real instances involving hundreds of cars. Car families are defined so
that two cars of the same family contain the same optional equipment. Each optional equipment
i is associated with a Ni/Pi ratio constraint, meaning that at most Ni cars with option i can be
scheduled in any subsequence of Pi cars, otherwise a penalty occurs. The objective is to minimize
a weighted function involving ratio constraint violations and the number of color changes. In [2], a
variation of the Renault problem is studied, where non-identical parallel machines (or production
lines) and eligibility constraints are considered (i.e. a job – or a car – can only be performed on
some specific machines). The objective function involves three components related to makespan,
smoothing costs and setup costs. In this work, we study another variant of the car sequencing
problem, where the violations of the 2/3 ratio constraint are penalized as smoothing costs in the
objective function, with eligibility and makespan constraints.

In the considered problem (P) are considered n jobs, m non-identical machines and eligibility
constraints. Each job j belongs to one of the g available families and has a processing time pij
depending on the machine i. A solution s contains a production sequence for each machine. The
goal consists in minimizing the smoothing cost function f(s), which is the weighted number of
times we have three consecutive jobs of the same family in s. In addition, the overall makespan
cannot exceed an upper bound UB (but UB is set large enough to easily prevent the rejection
of jobs). A small value of UB usually indicates a high occupancy rate of the machines, and as a
consequence, the production system will be available sooner for future commands.

2 Solution methods for (P)

Three different methods are proposed: GR (a greedy heuristic), TS (a conventional tabu search),
and TSGR (a tabu search with guided restarts, managed with a distance function). The time limit
of each algorithm is T = 15 minutes (which is consistent from a practical standpoint). Note that if
an algorithm stops before T , it is restarted and the best generated solution is returned to the user.

GR starts from an empty solution s. At each step, it inserts the job j in s which minimizes
the augmentation of f , while respecting the eligibility and makespan constraints. Each possible
insertion is tested and ties are broken randomly. GR stops when all jobs are scheduled.

TS starts from an initial solution provided by GR and, at each iteration, tries to improve it by
performing the best possible non tabu move. A move is defined as positioning a job somewhere
else in the solution (in the same sequence or in the sequence of another machine). Each time a
move is performed, it is forbidden (tabu) to move it again for tab iterations, where tab is uniformly
generated in interval [3, 7] after each move.
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In TSGR, guided restarts of TS are performed as follows, where a cycle is defined as an execution

of TS for I = 100 iterations. Let s
(k)
b (resp. s

(k)
i ) be the best visited (resp. initial) solution in

cycle k. The distance between two solutions s1 and s2 is defined as dist(s1, s2) =
∑

j yj(s1, s2),
where yj(s1, s2) = 1 if job j is has the same position index in solutions s1 and s2 (for the sequence
it belongs to, independently of the machine), and y(s1, s2) = 0 otherwise. Note that the same
sequence of jobs can appear on two different machines for s1 and s2, which is consistently measured

as equivalent situations by the distance function. Then, at the end of a cycle k, if dist[s
(k−1)
b , s

(k)
b ] <

n/4, s
(k+1)
i is generated by performing 10 random swap moves on s

(k)
b , otherwise s

(k+1)
i is generated

with GR. Note that swap moves are defined as exchanging the position index of two jobs on the
same machine. This mechanism allows to intensify the search if the two best solutions of two
consecutive cycles have a similar structure. Otherwise a diversification action is triggered with a
restart.

3 Results

An exact linear formulation relying on CPLEX 12.4 has been tested with a time limit of 10 hours
on an Intel Quad-core i7 @ 3.4 GHz with 8 GB DDR3 of RAM memory. CPLEX is only able to
solve instances with up to 30 jobs, for which the proposed tabu search approaches are usually able
to quickly find optimal solutions. For these reasons, exact methods will not be discussed further.

The instances are derived from the ones presented in [2]. MethodsGR, TS and TSGR are compared
in Table 1. For each instance are first given n, m, UB and f⋆, which is the best solution value
found by any of the algorithm. The next column indicates the percentage gap between f⋆ and
the best solution value found by GR within T = 15 minutes. The last two columns present the
same information for TS and TSGR (but the results are averages over 10 runs with T = 15
minutes). The last row indicates the average gaps for the three methods. The best result for each
instance is highlighted in bold face. It can be observed that: (1) TS is much more efficient than
GR, which shows the relevance of the used moves; (2) TSGR significantly outperforms TS, which
indicates that the proposed way to guide the restarts is powerful, and should be investigated for
other problems.

Table 1. Results on instances with 100 and 300 cars

n m UB f⋆ GR TS TSGR

100 4 3604 3005 4.49% 5.39% 0.00%
100 4 3612 3005 4.49% 2.70% 0.00%
100 4 3610 2980 5.37% 0.39% 0.00%
100 4 3632 2850 10.18% 4.02% 0.70%
300 5 9005 960 42.92% 8.72% 2.08%
300 5 9038 895 47.82% 7.31% 4.02%
300 5 9086 870 52.07% 5.32% 1.38%
300 5 9143 730 81.23% 12.77% 0.68%

Average 31.07% 5.83% 1.11%
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