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1 Introduction

Quadratic programming is a mathematical discipline which is used in several applications such as
regression, production, portfolio selection, SVM problems and partial differential equations, etc.

In this paper, instead of using the standard direction of the adaptive method [3], we suggest a
new descent direction, called hybrid direction. We define a quantity called the optimality estimate
from which we derive sufficient and necessary conditions for the optimality of a given support
feasible solution. On the base of this new direction and following the work [1], which is devoted for
solving linear programs, we construct an algorithm for solving the convex quadratic programming
problem.

The paper is organized as follows: Section 2 states the problem and reviews some definitions.
In Section 3, we present the suggested hybrid direction algorithm. Finally, Section 4 concludes the
paper and provides some perspectives.

2 Statement of the problem and definitions

A convex quadratic program with bounded variables can be presented in the following form:

minF (x) =
1
2
x′Dx + c′x, s.t. Ax = b, d− ≤ x ≤ d+, (1)

where D = (dij , 1 ≤ i, j ≤ n) is a nonnul square matrix of dimension n, which is symmetric and
positive semidefinite; c, d−, d+ and x are n-vectors; b is an m-vector; A is an m×n matrix, with
rank(A) = m < n. The symbol (’) represents the transposition operation. Let I = {1, 2, . . . ,m}
and J = {1, 2, . . . , n} be two sets of indices. Let JB and JN be two subsets of J such that
J = JB ∪ JN , JB ∩ JN = ∅, |JB | = |I| = m. Let AB = A(I, JB) and AN = A(I, JN ). We assume
that detAB = detA(I, JB) 6= 0. For a feasible solution x ∈ Rn, we compute the reduced costs
vector E as follows: E′ = g′ − u′A, with g = g(x) = Dx + c, u′ = g′BA−1

B , gB = g(JB). Let IN be
the identity matrix of dimension n−m. So we compute the two matrices:

Z = Z(J, JN ) =
(
−A−1

B AN

IN

)
, M = M(JN , JN ) = Z ′DZ. (2)

Let JS ⊂ JN such that detMS = detM(JS , JS) 6= 0, and set JNN = JN \ JS . So JB and JS are
called respectively a constraints support (CS) and an objective function support (OS). The set
JP = {JB , JS} formed by a CS JB and an OS JS is called a support for the problem (1). The
pair {x, JP } is called a support feasible solution (SFS). It is called consistent if E(JS) = 0 and it
is called nondegenerate if d−j < xj < d+

j , j ∈ JB . In the following, we assume that a CS JB , an
OS JS , and a feasible solution x = x(J), with E(JS) = 0, are available in advance. So {x, JP } is a
consistent SFS.

3 Algorithm

• We compute the number: α = ‖D‖∞ = max1≤i≤n

∑n
j=1 |dij | > 0.

• We define the following sets of indices:

J+
NN = {j ∈ JNN : Ej > α(xj − d−j )}, J−NN = {j ∈ JNN : Ej < α(xj − d+

j )},

JP
NN = {j ∈ JNN : α(xj − d+

j ) ≤ Ej ≤ α(xj − d−j )}, JP0
NN = {j ∈ JNN : Ej = 0},

JP+

NN = {j ∈ JNN : 0 < Ej ≤ α(xj − d−j )}, JP−

NN = {j ∈ JNN : α(xj − d+
j ) ≤ Ej < 0}.

(3)
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• We compute the nonnegative quantity β(x, Jp, α), called the optimality estimate:

β(x, JP , α) =
∑

j∈J+
NN

Ej(xj − d−j ) +
∑

j∈J−
NN

Ej(xj − d+
j ) +

1
α

∑
j∈JP

NN

E2
j . (4)

We can prove the following theorem:

Theorem 1. (Sufficient and necessary condition for optimality.) Let {x, JP } be a consistent SFS
of the problem (1). Then the condition β(x, JP , α) = 0 is sufficient, and in the case of nondegen-
eracy of the SFS {x, JP }, also necessary for the optimality of the feasible solution x.

• If β(x, JP , α) = 0, then {x, JP } is an optimal SFS. Else, we compute the descent feasible direction,
called hybrid direction, as follows:

lj = d−j − xj , if j ∈ J+
NN ; lj = d+

j − xj , if j ∈ J−NN ; lj = −Ej

α , if j ∈ JP
NN ;

l(JS) = −M−1
S M(JS , JNN )l(JNN ) and l(JB) = −A−1

B (ASlS + ANN lNN ).
(5)

• We compute the reduced costs direction: δN = MlN .
• We compute the steplength θ0 along the direction l as follows:

θ0 = min{1, θj1 , θjs , σF }, θj1 = minj∈JB
θj , θjs = minj∈JS

θj , σF = σj∗ = minj∈JNN
σj ;

θj =
d+

j
−xj

lj
, if lj > 0; θj =

d−
j
−xj

lj
, if lj < 0; θj = ∞, if lj = 0;

σj = −Ej

δj
, if Ejδj < 0; σj = ∞, otherwise.

(6)

• We compute the new solution and the new reduced costs vector:

x̄ = x + θ0l and ĒN = EN + θ0δN . (7)

• Let us define the sets of indices: J̄+
NN , J̄−NN , J̄P0

NN , J̄P+

NN , J̄P−

NN , which are obtained by replacing
in (3), x by x̄ and E by Ē. Moreover, we compute the new optimality estimate β(x̄, JP , α) by
replacing in (4), x, E, J+

NN , J−NN , JP
NN by x̄, Ē, J̄+

NN , J̄−NN , J̄P
NN respectively.

• If β(x̄, JP , α) = 0, then {x̄, JP } is an optimal SFS. Else, we start a new iteration with the SFS
{x̄, J̄P }, where J̄P is the new support computed as follows:
• if θ0 = θjs

, then set J̄B = JB , J̄S = JS \ js, J̄P = {J̄B , J̄S};
• if θ0 = θF = σj∗ , then set J̄B = JB , J̄S = JS ∪ j∗, J̄P = {J̄B , J̄S};
• if θ0 = θj1 , then

• compute the vector X ′ = (xj1j , j ∈ JN ) = −e′j1A
−1
B AN ;

• if there exists an index j0 ∈ JS such that xj1j0 6= 0, then set

J̄B = (JB \ j1) ∪ j0, J̄S = (JS \ j0), J̄P = {J̄B , J̄S};

• else, set J̄B = (JB \ j1) ∪ j∗, J̄S = JS , J̄P = {J̄B , J̄S}.

4 Conclusion

In this work, we have suggested a hybrid direction algorithm for solving convex quadratic pro-
gramming problems with bounded variables. Necessary and sufficient conditions are derived to
characterize the optimality of the current solution. In future work, we will implement and compare
our method with the classical approaches.
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