
Hybrid Method for Binary Multi-Objective Multiconstaint
Knapsack Problems

Chahrazad Adiche1,2 and Méziane Aı̈der2

1 UMBBoumerdes, Fac. Sciences, Dep. Mathematics, Algeria
2 USTHB, Fac. Mathematics, LaROMaD, BP 32 El Alia, 16111 Algiers, Algeria

adichechahra@yahoo.fr, m-aider@usthb.dz

1 Introduction

The multi-objective multiconstraint knapsack problem can be expressed by the following mathe-
matical programming:

(MOMCKP)

“ max′′ Zk(x) =

n∑
j=1

ckjxj k = 1, . . . , p

n∑
j=1

λijxj ≤ µi i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

where n is the number of items, m the number of knapsack constraints and ckj is the value of the
item j (j = 1, . . . , n) for the criterion k (k = 1..p). All the parameters are assumed to be positive
integers. The problem is obviously NP-hard, since its mono-objective version is.

In Pareto optimization, the aim is to find the set of “efficient” solutions in an exact or in an ap-
proximate way. Exact methods seek to solve a problem to guarantee optimality but their execution
on large real world problems usually requires too much computation time. The branching sequence
has a great impact on the convergence of the branch and bound approach.

This work presents a new hybrid method to solve binary multi-objective multiconstraint knapsack
problems. The main idea of the proposed hybridization is to incorporate an heuristic method based
on a fuzzy dominance relation into a multi-objective branch and bound scheme. The strength of
this hybridization is in quickly determining a set of “efficient” solutions.

2 Multi-objective Multiconstraint Knapsack and Branch & Bound

We propose one adaptation of the branch-and-bound method dedicated to the multi-objective
knapsack problem type in 0 − 1 [1], to (MOMCKP). The addition of constraints of the con-
sidered problem involves too many possible combinations to evaluate and so, causes new levels of
complication in the solution process.

In the branch-and-bound scheme, the solution space is explored by dynamically building a tree
and by using the following three basic procedures: separation, evaluation and sterilization. Partial
solutions (nodes of the search tree) are created by assigning zeros and ones to subsets of items
denoted B0 and B1, respectively. Items not yet assigned (neither zero nor one) define the set
F ⊆ {1, . . . , n} of the free items and we then have {1, . . . , n} = B0 ∪B1 ∪ F .

The branching sequence is crucial for the performance of the method. Let θ be the order according
to which variables (items) of a partial solution will be assigned a value. The order θ can be defined
as in Florios et al. [2] according to the increasing values of the following heuristics rules (1)− (2):

Ave sortj =
1

p.m

p∑
k=1

m∑
i=1

ckj
λij
, j = 1, . . . , n. (1)

maxj = max
k=1,...,p; i=1,...,m

ckj
λij
, j = 1, . . . , n. (2)

2 Adiche, Aı̈der

Assume that the items a1, a2, . . . , an are labeled in a decreasing order according to one of the rules
(1)− (2).

The branch-and-bound algorithm starts by fixing many items according to the θ order to quickly
find a good feasible solution. Thus, many branches of the tree can be pruned early. The list N of
nodes is maintained as a LIFO stack (Last In First Out). When a node is pruned, the algorithm
backtracks and creates a new node by moving the last item (t < n) in B1 to B0. In addition, all
items in B0 after this new item become free (F ← {t+ 1, . . . , n}). If, however, n was the last item
in B1 (t = n), let be u the smallest index such that {u, u+ 1, . . . , t−1, t} ⊂ β1 and s the last index
of β1 \ {u, . . . , t}. Then, the algorithm removes all items {s, . . . , n} in B1 and defines B0 to be all
previous elements of B0 up to s− 1 and to include s. Furthermore, all items after the s− th item
become free (F ← {s + 1, . . . , n}). When a node is not pruned, the algorithm progresses deeper
down the tree and creates a new successor node. Indeed, as many items as possible are included
in B1, according to order θ, i.e. as they appear in F . But if the remaining vector µ does not allow
item l to be added to B1, the first possible item r of F , which can be added to B1 is sought and
item r is added to B1. Of course, all items {i, . . . , r − 1} must be added to B0.

3 Heuristic rule based on fuzzy dominance relation

Let Ê = {a1, a2, . . . , an} be a set of items. The vector (U1(ai), U
2(ai), . . . , U

J(ai)), where U j(ai) =

U(ai, π
j) =

m∑
k=1

πj
kc

k(ai), j = 1..J , represent the multiple utilities of the item ai according to the

various randomly generated weight vectors π1, π2, . . . , πJ , (πj = (πj
1, . . . , π

j
k, . . . , π

j
p)).

The credibility of the proposition “ai is at least as good as ah” is computed by the following fuzzy
dominance relation on Ê × Ê:

µD(ai, ah) = max(PU (ai, ah)− PU (ah, ai), 0),

where PU (ai, ah) represents the proportion of utility for which ah is not preferred to ai and is
defined by:

PU (ai, ah) =

{
|{j,Uj(ai)≥Uj(ah)}|

J , if 6 ∃j0 such that U j0(ai) + v < U j0(ah);
0, otherwise,

and v is a threshold of veto (for example: v = 0.2).

If for one weight vector j0, the difference between U j0(ai) and U j0(ah) is too unfavorable to ai,
then we refuse any credibility to the upgrade of ah by ai whatever are the performances of these
two items for the other weight vectors.

For a fixed item ai, µD(ai, ah) represents the fuzzy subset of items ah dominated by ai. Its com-
plementary, defined by the membership function 1− µD(ai, ah), is the fuzzy subset of items non-
dominated by ai. The intersection of all the fuzzy subsets of the items non-dominated by ai,
when ai goes through Ê gives the subset of the items that are dominated by no other one. The
corresponding membership function is defined by:

µND(ah) = inf[1− µD(ai, ah), ai ∈ Ê] = 1− sup[µD(ai, ah), ai ∈ Ê].

µND(ah) can be interpreted as the degree of truth of the assertion: “ah is dominated by no item

in Ê”.

When we look for the best items, it is thus logical to choose the one for which the value of µND

is closest to 1. To obtain a complete ranking, θ, of items, it is necessary to proceed by successive
steps, by eliminating the items already ranked and by recomputing µND at every time.

References

1. Ehrgott, M.: Multicriteria Optimisation. Springer, march (2005).
2. Florios, K. ; Mavrotas, G. ; Diakoulaki D.: Solving multiobjective, multiconstraint knapsack problems

using mathematical programming and evolutionary algorithms. European Journal of Operational Re-
search, 14–21 (2010).

