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The Multiple Knapsack Problem (MKP) is a well-known NP-hard combinatorial optimisation
problem [1] and its goal is to maximize the profit of items chosen to fulfil a set of knapsacks, sub-
jected to constraints of capacity. The problem can be formulated as max(

∑n
i=1 (Pi ·Xi)), subject

to
∑m

j (Wij ·Xi) ≤ Cj with Xi ∈ {0, 1}. Where n is number of items, m is number of knapsacks,
Pi ≥ 0 is the profit of item i, Wij ≥ 0 is the weight of item j, Cj ≥ 0 is the capacity of knapsack
j, and Xi assumes 1 if item i is in the knapsack and 0 otherwise.

Due to its complexity, a large number of heuristics and metaheuristics have been applied to
the MKP, especially Genetic Algorithms (GA)[2][3]. GA are inspired by the laws of Darwin where
stronger and adapted individuals have greater chances to survive and evolve [4].

This paper proposes an one population island-inspired GA, named iGA. Instead of using pop-
ulations of individuals as islands (island-model GA), our approach uses only one population where
each individual is considered to be an island itself. In our proposal, each individual i in the pop-
ulation selects by tournament selection another individual j to migrate. The migration process
indicates that individual i will be able to exchange information with individual j. The interaction
is made using an uniform crossover that produces one offspring. After that, a bit-flip mutation
routine is applied. If the resultant offspring is better than the selected individual (greedy choice),
the selected individual is replaced. Otherwise, the offspring is ignored and the selected individual
remains the same.

Also, a method to adapt the control parameters (crossover and mutation rates) is applied. It
is known that the optimum values of the control parameters can change over the optimization
process, directly influencing the efficiency of the method [5]. To obtain the adaptive control of
crossover and mutation rates, a set of discrete values is introduced for each of them. A single value
is chosen for each parameter at each generation through a roulette wheel selection strategy. The
probability of choosing a value is initially defined equally which is subsequently adapted based on a
criteria of success. If a selected value for a parameter yielded at least one individual in generation
t + 1 better than the best fitted individual from generation t, then the parameter value has a
mark of success. Hence, if at the end of generation t + 1 the parameter value was successful, its
probability is increased with an α value, otherwise, it remains the same. The α is calculated by a
linear increase α = min+ (((max−min)/ITER) ∗ i), where ITER is the number of iterations, i
is the current iteration, max is the maximum value of α and min is the minimum value of α. To
ensure a minimum of chance for each value of parameters, a β value is established.

Experiments were run using 11 benchmarks [6]. For each benchmark, 100 independent runs
were performed with randomly initialized populations. A simple Genetic Algorithm (sGA) was
implemented for comparison. It uses tournament selection, uniform crossover and elitism of one
individual. Both sGA and iGA have the same parameters: population size (POP = 100), number
of iterations (ITER = 1, 000), tournament size (T = 3), 80% of crossover rate, 5% of mutation
rate, and elitism of one individual.

The strategy to adapt the crossover and mutation rates is applied in both algorithms, sGA and
iGA, leading to its adaptive versions A-sGA and A-iGA, respectively. In these cases, the set of
values for crossover rate was defined as {50, 60, 70, 80, 90} and for mutation rate it was defined as
{1, 3, 5, 10, 15}. A range of 0.01− 0.1 was chosen for α and the β parameter was set to 0.01. All of
these choices were made empirically.

Table 1 shows the optimum value (V ), the number of knapsacks (K ) and the number of
dimensions (D) for each benchmark. This table also presents the average and the standard deviation
of the best result (Avg±Std) obtained in all runs for each algorithm, the average number of objective
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function evaluations (Eval) required to achieve the optimum value, the success rate (Success)
calculated as the percentage that the algorithm reached the optimum value, and the dominance
information (Pareto) indicating which algorithms are better than the others concerning both the
average best result and the average number of function evaluations. If more than one algorithm is
marked in the same benchmark means that they are non-dominated (neither of them are better
than the other in both criteria). Also, for each algorithm, the last line (Average) shows the average
of evaluations and the average of success rate for all benchmarks.

Analysing the results obtained by sGA and iGA we can notice that the proposed island-inspired
approach obtained much better results (success rate and average of function evaluations) than the
sGA, except for the instance PB5. This gain can be explained by the model used for exchange
information that slows down the premature convergence of the algorithm allowing it to better
explore the space of solutions.

Comparing the results obtained by iGA and A-iGA, we can notice that the results (success rate)
were even better when using the adaptive parameter control strategy for almost all benchmarks
except for instances PB5, PB7, and SENTO1. Also, the average number of function evaluations
decreased when using the parameter control strategy. This improvement can be explained by the
adaptive choices for the values of parameters during the optimization process.

Analysing the dominance information concerning all algorithms (Pareto), it is possible to no-
tice that the proposed approach with adaptive parameter control, A-iGA, is present in the non-
dominated set in 9 out of 11 instances. This indicates that A-iGA is robust concerning both
criteria.

Benchmark sGA iGA

V K D Avg±Std Eval Success Pareto Avg±Std Eval Success Pareto

PB1 3090 4 27 3085.26±10.78 34995.18 82.00% 3090.00±0.00 13912.02 100.00% x
PB2 3186 4 34 3131.08±40.44 89051.75 17.00% 3173.19±17.20 74237.64 51.00%
PB4 95168 2 29 95071.01±551.51 9251.30 97.00% 95168.00±0.00 7231.01 100.00% x
PB5 2139 10 20 2138.15±3.71 29852.48 95.00% x 2137.13±5.32 30514.89 89.00%
PB6 776 30 40 769.57±10.49 51759.22 68.00% 775.86±1.39 12657.32 99.00%
PB7 1035 30 37 1026.34±6.92 92079.76 17.00% 1034.32±2.22 42747.69 83.00% x
PET7 16537 5 50 16428.88±47.93 100100.00 0.00% 16529.44±10.97 80221.17 60.00%
SENTO1 7772 30 60 7640.90±50.75 100100.00 0.00% 7771.64±2.06 47496.00 97.00% x
SENTO2 8722 30 60 8620.05±37.74 100100.00 0.00% 8717.77±5.71 87966.44 49.00%
WEING8 624319 2 105 566282.95±12678.93 100100.00 0.00% 612963.36±2750.51 100100.00 0.00%
WEISH30 11191 5 90 10824.70±92.10 100100.00 0.00% 11159.03±13.71 100100.00 0.00%

Average 73408.15 34.18% 54289.47 66.18%

Benchmark A-sGA A-iGA

V K D Avg±Std Eval Sucess Pareto Avg±Std Eval Sucess Pareto

PB1 3090 4 27 3086.98±8.17 45491.35 86.00% 3090.00±0.00 17559.92 100.00% x
PB2 3186 4 34 3142.10±32.96 91786.79 15.00% 3173.47±18.83 72674.13 54.00% x
PB4 95168 2 29 94956.92±769.63 21115.21 91.00% 95168.00±0.00 8102.60 100.00% x
PB5 2139 10 20 2136.62±5.90 33728.52 86.00% 2136.79±5.72 34976.06 87.00%
PB6 776 30 40 770.64±10.04 46877.06 72.00% 775.89±1.09 12355.48 99.00% x
PB7 1035 30 37 1024.34±7.98 92400.93 12.00% 1034.12±2.62 43877.91 78.00%
PET7 16537 5 50 16451.34±50.91 98634.27 6.00% 16530.22±10.11 76512.13 64.00% x
SENTO1 7772 30 60 7678.39±80.06 95481.81 14.00% 7770.61±3.98 39808.61 89.00% x
SENTO2 8722 30 60 8649.13±50.80 99942.68 1.00% 8718.85±4.54 71824.83 55.00% x
WEING8 624319 2 105 583830.05±20597.21 100100.00 0.00% 623388.14±1432.22 72758.08 65.00% x
WEISH30 11191 5 90 10962.33±189.93 99851.97 3.00% 11190.72±1.02 51125.45 93.00% x

Average 75037.32 35.09% 45597.74 80.36%

Table 1. Results obtained.

Overall, it is possible to conclude that the proposed approach is an effective method for op-
timization and adaptive parameter control. As future research we intend to apply the A-iGA in
different problem domains.
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