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1 Introduction

The flow-shop scheduling problem is one of the most studied combinatorial optimization problems,
due to its large number of practical application in manufacturing, transportation problems and
service systems such as electronics, paper and textile industries, manufacturing of photographic
films, internet service architectures, and container handling systems [1]. The general idea is to
schedule a set of tasks on a line production system with more than one stage, considering one
or multiple objectives to be optimized. This work focuses on a more general case of the flowshop
scheduling problem in which each stage has several machines in parallel. This configuration adds
more flexibility at each processing station by increasing the overall capacity, and avoiding bottle-
necks if some operations are too long [2]. The problem is known as the Flexible or Hybrid Flowshop
Scheduling (HFS) and objectives to be minimized are the makespan, the total tardiness and the
number of tardy jobs. The HFS problem is known to be NP-hard even for the case of a system with
only two processing stages when one stage contains two machines and the other stage contains a
single machine [3].

Formally, the problem can be described as follows. A set of n jobs are to be processed on a set
of s stages in series, each one containing a set of ms machines in parallel. This problem denoted

as FHs, PM (l)l

s=1| |(Cmax,
∑

Tj ,
∑

Uj), which has M (l) homogeneous or identical machines (i.e.,
machines with equal capacity and processing speed) at each stage. Each job j (j = 1, ..., n) has to
be processed on only one machine at each stage. A machine can only execute one job at a given
time. The processing route of all jobs is identical (i.e., job j is first processed on one machine at
stage 1, then on one machine at stage 2, and so on). The processing time of job j on any machine
of stage s is denoted as pjs. All jobs are available at the beginning of the time horizon (e.g., all jobs
have the same release date) and once the processing of a job is started, it cannot be interrupted
(e.g., preemption is not allowed). Besides that, job j has to be finished before a given due date,
denoted as dj . The makespan is denoted as Cmax = max {Cj}, where Cj is the completion time of
job j; the total tardiness is denoted as

∑
Tj , where Tj = max {0, Cj − dj} is the tardiness of job

j; and the number of tardy jobs denoted as
∑

Uj , where Uj is a binary variable with value equal
to 1 if job j is tardy (that is, if Cj > dj); and 0 otherwise.

The literature has witnessed the proposition of considerable amount of algorithms to solve
mono-objective versions of the problem [1]. The multi-objective case has been solved mainly using
meta-heuristic algorithms such as simulated-annealing [4], genetic algorithms[5], ant colony system
algorithm [6, 7]. Objective functions include the makespan and the total flow time, or the makespan
and the total tardiness. The three objective functions under study in the current paper have not
been previously taken into account.

2 Solution approach and experiments

In order to solve the multi-objective HFS problem presented previously, two meta-heuristics are
considered: Ant Colony Optimization (ACO) and Non-dominated Sorting Genetic Algorithm-II
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(NSGA-II). The former has been shown in the literature to be a very efficient and effective meta-
heuristic to solve mono-objective HFS problem [8], while the latter has shown a flexible structure
and a successful application to a wide range of multi-objective combinatorial optimization problems
[9]. The problem is modeled using a disjunctive graph and the basic tenets of such procedures are
considered in the first instance.

Concerning the NSGA-II, the population is randomly generated. At each iteration a sorting
procedure is applied to rank the solutions according its dominance over the total population. Then a
solution is said to be better if it is not dominated by any other solution in the population. Selections
of the best solutions found so far are used for applying the Partially Matched Crossover (PMX)
and produce new solutions. Mutation with a fixed probability is also considered. The algorithm
stops after a predefined number of iterations.

The computational experiments were carried out on a PC Intel Core i7, 2.9 GHz with 8GB
of RAM. The proposed meta-heuristics were coded using Visual Basic 6.0. Datasets employed
in our experiments were taken from the OR-Library and can be downloaded from the webpage:
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/multiflowinfo.htm. Instances with 20 and 100 jobs
and shops with 2, 5 and 8 stages were considered. For each meta-heuristic, non-dominated solutions
(i.e., the set of Pareto-optimal solutions), were registered. Up to now, the preliminary results
obtained include the set of non-dominated solutions for each meta-heuristic for selected instances.
An overview of these preliminary results is presented in Table 1. For example, regarding the
performance of ACO, results have shown that the quality of the solution is not affected when
the numbers of jobs to be scheduled are increased; while this is not the case when the number
of stages increases. Further analysis is however required. This includes the evaluation of distance
measures between two fronts, the coverage of the solutions of both meta-heuristics, the deviation
with respect to a single objective, the deviation with respect to the best initial solution, and the
computational time.

sets of nondominated solutions (Cmax,
∑

Tj ,
∑

Uj)
NSGA-II: SOL1 NSGA-II: SOL1 ACO: SOL1 ACO: SOL2

P20S2T01 390, 2617, 10 389, 2601, 11 408, 2729, 12 424, 2721, 12

P20S5T01 1450, 12716, 13 1535, 12600, 14 1612, 13271, 16 1664, 13127, 16

P20S8T01 2001, 22345, 16 2090, 22350, 13 2185, 21845, 16 2105, 23811, 16

PH1S2T01 1885, 71670, 70 1879, 70601, 72 1867, 75017, 79 1898, 74824, 79

PH1S5T01 9230, 45672, 78 9321, 44567, 81 9343, 466996, 83 -

PH1S8T01 9242, 45684, 80 9331, 44577, 83 9287, 426315, 82 9355, 424216, 82

Table 1. Examples of non-dominated solutions
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