Scheduled Penalty Variable Neighborhood Search

E. Manni! and B.W. Thomas?

! Dipartimento di Ingegneria dell’Innovazione, Universita del Salento, Lecce, Ttaly
emanuele.manni@unisalento.it
2 Department of Management Sciences, University of Iowa, Iowa City, Iowa, USA
barrett-thomasQuiowa.edu

1 Introduction

For many NP-hard combinatorial optimization problems, the existence of constraints complicates
the implementation of a heuristic search procedure. Standard approaches for handling these con-
straints include (i) preserving feasibility in the search sequence of solutions through appropriately
designed move operators and/or problem encodings, (ii) repairing infeasible solutions to obtain a
corresponding feasible solution, and (iii) penalizing infeasibility to direct the search towards feasible
solutions. In this talk, we extend the well known Variable Neighborhood Search algorithm (VNS)
to include dynamic constraint penalization. We specifically focus on what are known as scheduled
penalty methods and call the new algorithm scheduled-penalty VNS (spVNS). A scheduled penalty
increases the level of penalization at each iteration of the search according to a pre-determined
schedule. The iterative increase of the penalty has the effect of gradually driving the search from
infeasible to feasible regions of the search space. In Section 2, we describe our solution approach,
whereas in Section 3 we give an insight about the computational results we will present.

2 Algorithmic Design

We take as given the following combinatorial optimization problem:

CP minimize v(z) = f(x) (1)
subject to: g;(z) > b;; i=1,...,m (2)
hj(x) >d;; j=1,...,q (3)

z €S, (4)

where S is a finite set, and f(-), gi(-), h;(-) are real-valued functions on S. To recover well-defined
neighborhoods for our search, we relax constraints (2) with a specific penalty term. Specifically,
for each x € S, let p(z) be real-valued, nonnegative functions such that p(z) = 0 if and only if
gi(x) > b; for i = 1,...,m. Let X be a nonnegative, scalar penalty multiplier A. Then, we formulate
RP()), a relaxation of CP, as

RP()\) minimize o'(z,\) = f(z)+ Ap(z) (5)
subject to: hj(z) >d;; j=1,...,q (6)
reS. (7)

Our aim is to solve problem RP()\). As our computational results will show, spVNS is capable of
doing so in a way that finds high quality solutions that are also feasible to CP. The procedure,
depicted in Algorithm 1, takes as input a function v’(z, \) that evaluates a solution z of the chosen
problem instance for a given value of the penalty multiplier. We assume that v’ (x, A) is obtained as a
modification of the true objective v, accounting for the relaxation of particular problem constraints.
The augmented objective v’(z, A\) penalizes the violation of these relaxed constraints with the
penalty parameter A. The algorithm also requires an input parameter denoting the maximum
number of penalty updates iy,ax, and another one denoting the maximum neighborhood size kpax.

The problem is initialized with a solution, not necessarily feasible, x. As with traditional VNS
implementations (for discussion, see [1]), the solution is perturbed by a function SHAKE(z,k)
that randomly selects x’, a neighbor of x from neighborhood Ny (z). A local search procedure Lo-
CALSEARCH(z’, A) is then run with the intent of finding an improved solution x”. If 2"’ is improving,

2 Manni and Thomas

Algorithm 1 Scheduled Penalty Variable Neighborhood Search
1: Input:
2: Data for a problem instance including a function v'(z,) that determines the value of a solution =
with regard to a penalty A for a measure of the violation of relaxed constraints

3: A maximum number of penalty updates imax
4: A maximum neighborhood size kmax

5: Qutput: Solution, x

6: Initialization:

7: Determine solution x

8 i=1,k=1,1=0

9: while ¢ < imax do

10: x’ < SHAKE(z, k).

11: x"" < LOCALSEARCH(z', \)

12: if v'(z,A) > v'(z”,\) then

13: z

14: else

15: k <— UPDATEPERTURBATIONLEVEL(K, kmax)
16: end if

17: A < UPDATEPENALTY (), %)

18: i<+—i+1

19: end while

then we update x with 2”. Otherwise, we update the perturbation level (UPDATEPERTURBATION-
LEVEL(-, -) function) by letting k = k+ 1. We note that the solutions are evaluated with respect to
the objective v'(-, A) throughout the algorithm. At the end of each improvement cycle, the penalty
parameter A is updated by the function UPDATEPENALTY (),). As we focus on scheduled penalty
methods, we assume that the update of A depends only on the current iteration ¢ and the current
penalty .

3 Computational Results

To test the effectiveness of the proposed algorithm, we test our approach on well known benchmark
instances of the traveling salesman problem with time windows and the orienteering problem with
time windows. Our goal with these tests is two-fold. First, the results justify choices in algorithmic
design. Second, through comparisons to state-of-the-art methods for the previously described test
instances, the results demonstrate the quality of the proposed general heuristic framework. In
addition to finding high quality solutions to the problems in the test sets, in some cases best known
solutions, our computational experiments identify several considerations in implementing VNS with
scheduled penalties:

1. the quality of the results is sensitive to the neighborhoods used in the shake phase,

2. high-quality results are achieved with much lower levels of perturbation than in standard VNS
implementations,

3. while the perturbation levels are lower, scheduled penalty VNS often requires a large number
of VNS iterations to reach high quality solutions. This result supports our implementation that
separates the VNS iterations from the perturbation level, and

4. when using VND as the local-search function, the method performed well using neighborhoods
well known in the literature.

References

1. Hansen, P., Mladenovié¢, N., Brimberg, J., Moreno Pérez, J. Variable neighborhood search. In: Gendreau,
M., Potvin, J.-Y., editors. Handbook of Metaheuristics. International Series in Operations Research &
Management Science; Springer; 2010, p. 61-86.

