
A Hybrid Metaheuristic Based on Heuristic Problem
Instance Reduction

Christian Blum1,2

1 University of the Basque Country UPV/EHU, San Sebastian, Spain
2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

christian.blum@ehu.es

1 Introduction

Hybrid metaheuristics [2, 6] are algorithms that combine components of different techniques for
optimization. Examples are combinations of metaheuristics with dynamic programming, contraint
programming, and branch & bound. In this work we present a hybrid metaheuristic which is based
on an iterative probabilistic reduction of the problem instance size, with a subsequent application
of an integer linear programming (ILP) solver in order to find the best solution contained in
the reduced problem instance. A similar idea can be found in [1, 3] for the classical traveling
salesman problem (TSP). The first algorithm phase consists in generating a bunch of high-quality
TSP solutions using a metaheuristic. These solutions are then merged, and the TSP is solved to
optimality in the resulting reduced graph. Another related idea is described in [4, 5] for cutting and
packing problems. The authors introduce a framework labelled Generate-and-Solve which makes
use of a metaheuristic engine to generate reduced problem instances, which are then solved to
optimality by means of a complete technique.

2 Proposed Algorithm

In the following we assume that, given a problem instance I, set C represents the set of all possible
solution components. Moreover, given a (valid) solution s, set C(s) ⊆ C represents the set of
solution components that are contained in solution s. Finally, set C ′ ⊆ C contains the solution
components that belong to the restricted problem instance.

The main loop of the proposed algorithm, which is executed while the CPU time limit is not
reached, consists of the following actions. First, the best-so-far solution sbsf is initialized to null,
and the restricted problem instance (C ′) to the empty set. Then, at each iteration a number of na

solutions is probabilistically generated (see function ProbabilisticSolutionGeneration(C) in line 6 of
Algorithm 1). The components of all these solutions are added to set C ′. The age age[c]) of a newly
added component is set to 0. After solution construction an ILP solver is applied to find the best
solution silp in the restricted problem instance C ′ (see function ApplyILPSolver(C ′) in line 12 of
Algorithm 1). In case silp is better than the current best-so-far solution sbsf, solution silp is stored as
the new best-so-far solution (line 13). Next, the age values of the solution components are updated
in function UpdateComponentAge(C ′, silp) (see line 14), that is, the age of each solution component
in C ′ is incremented, and, subsequently, the age of each solution component in C(silp) ⊆ C ′ is re-
initialized to zero. Finally, those solution components from C ′ whose age has reached the maximum
component age (agemax) are deleted from C ′ in function RemoveOldComponents(C ′, agemax); see
line 15. The motivation behind the ageing mechanism is that components which never appear in
an optimal solution of C ′ should be removed from C ′ after some while, because they slow down
the ILP solver. On the other side, components which appear in optimal solutions seem to be useful
and should therefore remain in C ′. This completes the description of the algorithm.

3 Results

The technique proposed in this paper is applied to two NP-hard combinatorial optimization prob-
lems. The so-called minimum weight rooted arborescence (MWRA) problem is a problem with
applications in computer vision and multistage production planning, whereas the minimum com-
mon string partition (MCSP) problem has applications in computational biology. In the case of the



2 Blum

Algorithm 1 Hybrid Metaheuristic (Hybrid) Proposal

1: input: problem instance I, values for parameters na and agemax

2: sbsf := null, C′ := ∅
3: age[c] := 0 for all c ∈ C
4: while CPU time limit not reached do
5: for i = 1, . . . , na do
6: s := ProbabilisticSolutionGeneration(C)
7: for all c ∈ C(s) and c /∈ C′ do
8: age[c] := 0
9: C′ := C′ ∪ {c}

10: end for
11: end for
12: silp := ApplyILPSolver(C′)
13: if silp is better than sbsf then sbsf := silp

14: UpdateComponentAge(C′, silp)
15: RemoveOldComponents(C′, agemax)
16: end while
17: output: sbsf

MWRA problem, problem instances consist of directed graphs (digraphs) with a designated root
node and real-valued weights on the arcs. Solutions are (not necessarily spanning) arborescences
rooted in the root node. The objective function value of an arborescence is the sum of the weights
of its arcs. The optimization objective concerns minimization. We applied the proposed algorithm
to 270 acyclic digraphs and to 270 digraphs that possibly contains directed cylces. Moreover, the
results of our approach were compared to the results obtained by applying the ILP solver to the
original problems, and to the results obtained by an ant colony optimization approach and a heuris-
tic algorithm, both from the related literature. They show, first, that our approach outperforms
the ant colony optimization approach and the heuristic. Moreover, they show that our approach
has important advantages over the direct application of the ILP solver especially when the problem
instance size grows. In the case of the MCSP problem, a problem instance consists of two (related)
strings of the same size. Note that two strings are related if each letter appears the same number
of times in each string. The optimization objective consists in finding a minimum size partition of
each input string such that the two partitions are equal. The proposed approach was applied to 45
problem instances from the literature, and the results were compared to a simple greedy algorithm
and to an ant colony optimization approach from the liteature, which is the current state of the
art. Our approach was able to improve over the results of the ant colony optimization algorithm
in all 45 cases.

Acknowledgements. This work was supported by grant TIN2012-37930-02 of the Spanish Govern-
ment. In addition, support is acknowledged from IKERBASQUE (Basque Foundation for Science).

References

1. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding tours in the TSP. Technical report,
Forschungsinstitut für Diskrete Mathematik, University of Bonn, Germany, 1999.

2. C. Blum, J. Puchinger, G. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial optimization: A
survey. Applied Soft Computing, 11(6):4135–4151, 2011.

3. W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS Journal on Computing,
15(3):233–248, 2003.

4. N. Nepomuceno, P. Pinheiro, and A. L. V. Coelho. Recent Advances in Evolutionary Computation for
Combinatorial Optimization, volume 153 of Studies in Computational Intelligence, chapter A Hybrid
Optimization Framework for Cutting and Packing Problems, pages 87–99. Springer Verlag, Berlin,
Germany, 2008.

5. P. R. Pinheiro, A. L. V. Coelho, A. B. de Aguiar, and T. O. Bonates. On the concept of density control
and its application to a hybrid optimization framework: Investigation into cutting problems. Computers
& Industrial Engineering, 61(3):463–472, 2011.

6. E.-G. Talbi, editor. Hybrid Metaheuristics. Number 434 in Studies in Computational Intelligence.
Springer Verlag, Berlin, Germany, 2013.


