

Multi-Objective Routing Algorithm for dynamic

communications mapping in NoC-based heterogeneous

MPSoCs

M. K. Benhaoua
1, 2

, A. E. H. Benyamina
1

1. Department of Computer Science, University of Oran – Es Senia, BP 1524, EL M’Naouer, Oran, Algeria

2. University Lille 1, LIFL, CNRS, UMR 8022, F-59650 Villeneuve d’Ascq, France
Email:

1, 2
{mohammed-Kamel.Benhaoua@lifl.fr},

1
{benyamina.abouelhassen@univ-oran.dz}

Keywords : Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC),

Heterogeneous architectures, Dynamic mapping heuristics, Routing algorithm.

1 Introduction

 Intensive embedded systems use Multi-Processor Systems-on-Chip (MPSoCs), which provide
increased parallelism towards achieving high performance [1], to cope with the limits of a single general
purpose processor, increasing computational demands and performance requirements. An MPSoC [2]
contains multiple processing elements (PEs) in the same chip. The Network-On-Chip (NoC) has been
introduced as a power efficient and scalable interconnection to support communication amongst the PEs [3].

The designer has to map the tasks of the application onto the different processing resources of the
MPSoC. Static mapping techniques defines task placement at design-time, having a global view of the
MPSoC resources. Such mapping techniques may use complex algorithms to better explore the MPSoC
resources towards achieving optimized solutions. However, static mapping is not able to handle the dynamic
workload of tasks or applications that need to be loaded into the system at run-time. Dynamic (run-time)
mapping techniques are required to handle these varying (dynamic) workloads. Such techniques find
placement of tasks on the MPSoC resources at run-time. The latest dynamic mapping approaches try to place
the communicating tasks on the nearest available PEs, i.e. close to each other in order to reduce the
communication overhead [4, 5]. However, these approaches do not perform well when applications contain a
large number of tasks. Further, most of the mapping works reported in the literature uses a deterministic
routing algorithm such as XY routing method [6, 7]. However, for a system that needs to handle dynamic
workflow, using a dynamic routing method can lead to better results.

Contributions: We present a dynamic Multi-Objective Routing Algorithm (MORA) that reduces
the communication costs when compared to often employed routing approaches. The model used for the
representation of applications is the master-slave model. This type of model is used to represent the
applications that have parallel communicating tasks. The considered heterogeneous MPSoC platform
contains two types of PEs: Instruction Set Processors (ISPs) and Reconfigurable Areas (RAs), which execute
software and hardware tasks, respectively. Existing techniques use deterministic routing approaches to
facilitate the communication. However, most of them do not focus on the adaptive routing (dynamic
communications mapping). In our proposed dynamic MORA tries to find the path of communications that
has the lowest load (widest bandwidth), resulting in optimized execution time and energy consumption. The
dynamic mapping approaches employing MORA routing method lead to performance improvements when
compared to approaches employing other routing methods such as XY.

Proposed Multi-Objective Routing Algorithm (MORA)

The reference heuristics including most of the existing dynamic task mapping approaches (e.g., [4, 5, 8, 9])
use deterministic XY routing algorithm to facilitate communication amongst the communicating tasks once
they are mapped onto the PEs. Example of such a routing is shown in Figure 1 (a). The figure shows an
example NoC where two communicating tasks are mapped on the source and destination nodes (PEs) and
they need to communicate with each other. The values mentioned adjacent to the links represent the volumes
present in the links, i.e. the number of packets to be transmitted through the links. Figure 1 (a) indicates that

in order to transfer a token from the source PE to the destination PE, the packet is first transferred 2 hop
distances in X direction and then 2 hop distances in Y direction while following the XY routing mechanism.
The packets are sent one by one in the same direction created by the first packet. In Figure 1 (a), the first
chosen link in X direction has volume of (150) that is more than the volume (110) present in Y direction.
Similarly, the second chosen link in the X direction has more volume than that of the link in Y direction
(250 vs. 80). This mechanism routes the packets through a path that incurs high communication costs due to
high volumes present in the links chosen for communication, resulting in high communication costs. Thus,
choosing such communication paths may incur high communication time and energy consumption.

In order to provide efficient communication between the source and destination nodes, an efficient routing
strategy needs to be developed. The routing strategy should be able to choose the links with lower volumes
at run-time. Figure 1 (b) describes an example for the operation of the proposed dynamic routing algorithm
presented in Algorithm 1. Unlike the XY routing, MORA chooses an efficient routing path where the
packets are transferred by the links having the lowest loads. The direction to be taken from source to
destination PE follows different paths depending upon the locat ion of the PEs and loads in the paths. If x-
coordinate of the source (Xsource) is less than the x-coordinate of the destination (Xdest), then the trajectory
(path) will be up to down; otherwise down to up. For down to up, if y-coordinate of the source (Ysource) is less
than the y-coordinate of the destination (Ydest), then the path will be left to right, else right to left. For all the
different paths, the algorithm chooses the link direction that has the lowest load. For example, Algorithm 2
shows how the lowest loaded link is found in the case of Up_to_Down-Left_to_Right. Depending upon the
load values present in the links, the algorithm chooses left to right (X’=Xsource,Y’=Ysource+1) or up to down
link, which has lower loads. Similar approach as that of Algorithm 2 is followed for other cases when Up,
Down, Left and Right are contained in the calling function. In the case when Ysource and Ydest are on the same
(i.e. in the same colum) then the direction is Up to Down or Down to Up and there is no evaluation to get
the load values on the link. The direction is automatically taken in one of the two directions. Similarly, if
Xsource and Xdest are the same (i.e. in the same row) then the link chosen and the direction is Left to right or
Right to Left. This kind of links selection towards the destination PE facilitates to choose the lowest loaded
links. Once a chosen link becomes more loaded, another less loaded link is chosen for the packet
transmission if the source and destination PE are not in the same row or column. Otherwise, the same link
gets used. For all the communicating tasks, the packets to be transferred use the same strategy.

Algorithm 1: Multi-Objective Routing Algorithm

Input: Xsource, Ysource, Xdest, Ydest
Output: X’, Y’
1: if Xsource < Xdest then //Up to Down

2: if Ysource < Ydest then
3: Up_to_Down-Left_to_Right(Xsource, Ysource)
4: else
5: Up_to_Down-Right_to_Left(Xsource, Ysource)

6: end if
7: else // Down to Up
8: if Ysource < Ydest then

9: Down_to_Up-Left_to_Right(Xsource, Ysource)
10: else
11: Down_to_Up-Right_to_Left(Xsource, Ysource)
12: end if

13: end if
14: if Xsource=Xdest then //in the same row
15: Right_to_Left-Left_to_Right(Xsource, Ysource)
16: end if

17: if Ysource=Ydest then // in the same column
18: Up_to_Down-Down_to_Up(Xsource, Ysource)
19: end if

(a) XY Routing (b) MORA Routing

Figure 1. XY and MORA

Algorithm 2: Up_to_Down-Left_to_Right

Input: Xsource, Ysource
Output: X’, Y’

1: if get_value_Link(Xsource,Ysource+1) < get_value_Link(Xsource+1,Y source) then
2: X’ Xsource
3: Y’ Ysource+1 //Left to Right

4: else
5: X’ Xsource+1 //Up to Down
6: Y’ Ysource

7: end if

Experimental results
• Scenario: four application sets: 1

st
 set - each application having 5 tasks, 2

nd
 set - each application having 10

tasks, 3
rd

 set - each application having 15 tasks, and 4
th

 set - each application having 20 tasks.

We have evaluated the performance for large size applications considered in Scenario. Figure 2
shows the execution time gets reduced when MORA routing is employed over the XY routing for all the
heuristics. Therefore, our approach provides more savings in total execution time for large size applications.
Figure 3 shows energy consumption for four application sets considered in Scenario. It can be observed that
the reduction in energy consumption by our approach over the existing approach increases as the number of
tasks in the considered applications is increased. Thus, our approach provides better savings for large size
applications.

In this paper, we propose heuristic for dynamic communications mapping that considers the
placement of communications in order to optimize the overall performance. The mapping technique uses a
newly proposed Multi-Objective Routing Algorithm (MORA) to place communications between the tasks.
The placement we propose of the communications leads to a better optimization of several performance
metrics (time and energy consumption). Experimental results show that the proposed mapping approach
provides significant performance improvements when compared to those using XY routing.

References
[1] A. A. Jerraya, H. Tenhunen, W. Wolf, “Guest Editors’ Introduction: Multiprocessor Systems-on-Chips”, IEEE Computer, Vol. 38, No.

7, 2005, pp. 36–40.

[2] Chip multiprocessor watch, 2008, http://view.eecs.berkeley.Edu/ wiki/Chip Multi Processor Watch.

[3] L. Benini, G. De Micheli, “Networks on chips: a new SoC paradigm”, IEEE Computer, Vol. 35, No. 1, 2002, pp. 70–78.

[4] E. Carvalho, N. Calazans, F. Moraes, “Dynamic task mapping for MPSoCs”, IEEE Design Test of Computers, Vol. 27, No. 5, 2010, pp.
26–35.

[5] A.K. Singh, T. Srikanthan, A. Kumar, W. Jigang, “Communication-aware heuristics for runtime task mapping on NoC-based MPSoC
platforms”, Journal of Systems Architecture, Vol. 56, No. 7, 2010, pp. 242 – 255.

[6] A. Mehran, A. Khademzadeh, S. Saeidi, “Dsm: A heuristic dynamic spiral mapping algorithm for network on chip”, IEICE Electronics
Express, Vol. 5, No. 13, 2008, pp. 464–471.

[7] M. Mandelli, A. Amory, L. Ost, F.G. Moraes, “Multi-task dynamic mapping onto NoC based MPSoCs”, In 24th International
Symposium on Integrated circuits and systems design (SBCCI’11), 2011, pp. 191–196.

[8] E. Carvalho, F. Moraes, “Congestion-aware task mapping in heterogeneous MPSoCs”, In Proc. International symposium on System on Chip
(SoC’08), 2008, pp. 1–4.
[9] L. Ost, M. Mandelli, G.M. Almeida, L. Moller, L.S. Indrusiak, G. Sassatelli, P. Benoit, M. Glesner, M. Robert, F. Moraes, “Power -aware
dynamic mapping heuristics for NoC-based MPSoCs using a unified model-based approach”, ACM Transactions on Embedded Computing Systems,

Vol. 12, No. 3, 2013, pp. 1–22.

Figure 2. Execution Time of 10 applications for four application sets

(Scenario), where each application contains 5, 10, 15 and 20 tasks

Figure 3. Energy Consumption of 10 applications for four application

sets (Scenario), where each application contains 5, 10, 15 and 20 tasks

http://view.eecs.berkeley.edu/

