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1 Introduction

In this paper, we are interested in the Maximum Satisfiability Problem (MAX-SAT) which is an
optimization variant of the Boolean satisfiability problem (SAT). SAT is of a central importance in
various areas of computer science, including theoretical computer science, algorithmic, artificial in-
telligence, hardware design and verification. Formally, given a set of m clauses C = {C1;C2 . . . Cm}
involving a set of n Boolean variables X = {X1;X2 . . . Xn} where a clause is a disjunction of literals
and a literal is a variable or its negation, the SAT problem [1] is to decide whether an assignment
of truth values to the variables of X exists or not such that all the clauses of C are simultane-
ously satisfied. Given a propositional formula F expressed in conjunctive normal form (CNF), the
MAX-SAT problem consists in finding a variable truth assignment that maximizes the number of
satisfied clauses of F . MAX-SAT is NP-Hard even when each clause has no more than two literals,
while SAT with two literals per clause can be solved in polynomial time.

In this work, we investigate a hyper-heuristic approach for MAX-SAT. A hyper-heuristic is
a high-level method that incorporates a set of low-level heuristics to handle classes of problems
rather than solving one problem. The hyper-heuristic method allows to select automatically during
the search process the heuristic that should be applied for finding good quality solutions and in
this way avoid search stagnation. The low-level heuristics can be either constructive or perturbative
heuristics. The constructive hyper-heuristics use a set of constructive heuristics that start with an
empty solution and try to complete it at each step while the perturbative hyper-heuristics start with
a complete initial solution and try to find better ones by improving it. In general, a hyper-heuristic
works as follow: Given an instance of a problem, the high level method uses a selection criterion
or a choice function strategy to choose the adequate low-level heuristic at any given time during
the search.

In this work, we develop a hyper-heuristic for the MAX-SAT problem. The proposed approach
performs a hybrid selection strategy that makes a balance between a choice function and random-
ness. These two components of the selection strategy of the proposed hyper-heuristic are controlled
by using a walk probability wp as it is done in a classical stochastic local search.

2 The proposed hyper-heuristic approach for MAX-SAT

We have studied some low-level heuristics dedicated to MAX-SAT. The proposed hyper-heuristic
uses the method of solution acceptance based on the quality criterion. The selection method of
low-level heuristics makes a balance between two selection strategies which are a choice function
and Randomness.

A solution is represented by a binary chain X (a n Vector X), whose each component Xi

receives the value 0 (False) or 1 (True). It represents an assignment of truth values to the n
variables. The quality of a solution (fitness) is measured by using an objective function which
consists in maximizing the number of satisfied clauses.

The hyper-heuristic uses seven different heuristics: The first heuristic (h1) makes a mutation on
the current best found solution. The obtained solution is enhanced by using a local search method.
The second heuristic (h2) consists in combining the current best solution found with a solution
created by using the first heuristic (h1) and the resulting solution is improved by using a local
search. The third heuristic (h3) is a stochastic local search method (SLS). The fourth heuristic
(h4) applies a mutation operator on the current solution. The mutation is controlled by a certain
probability called the mutation rate and the resulting solution is improved by using a local search
method. The fifth heuristic (h5) combines the best solution found with a new solution generated
randomly and the resulting solution is improved by using a local search method. The sixth heuristic
(h6) applies a mutation operator on the best solution. The mutation is also done with respect to
a defined probability called the mutation rate. The resulting solution is also improved by using a
local search method. Finally, the heuristic h7 chooses the variable that increases the number of
satisfied clauses.

The choice function of the hyper-heuristic consists of both a selection method (called the choice
function) and a method of solution acceptance. The solution acceptance method validates the new
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solutions that improve the current ones. The choice function is a score-based technique which
assigns a weight to each low-level heuristic. Indeed, this technique allows us to measure the ef-
fectiveness of a low level heuristic in order to decide which one should be selected for the next
execution. This technique is based on three parameters which are: the CPU time consumed by a
heuristic during the search process, the quality of the solution, and the time elapsed since the low
level heuristic had been called. In this work, we have used the same choice function as the one
defined in [2] and which is described as follows:

g1(hi) =
∑
n

αn−1 In(hi)

Tn(hi)
, g2(hID, hi) =

∑
n

βn−1 In((hID, hi)

Tn(hID, hi)
, g3(hi) = elapsedT ime(hi)

∀i, score(hi) = αg1(hi) + βg2(hID, hi) + δg3(hi), α, β ∈ [0, 1], δ ∈ R

.
where hi is a low-level heuristic and hID is the last low-level heuristic recently launched. The

values of α, β and δ are fixed empirically.
As it is done in the stochastic local search, this stochastic hyper-heuristic uses a similar principle.

More precisely, the selection method is based on both the choice function and randomness. The
low-level heuristic to be called at each step is selected according to one of the two following criteria:
The first criterion consists in choosing the heuristic in a random way with a fixed probability wp
> 0 as done in the Random hyper-heuristic. The second criterion consists in choosing the heuristic
hi according to the choice function described above (the one maximizing score(hi)). The process
is repeated a certain number of time which is fixed.

3 The first experimental results

The proposed method is implemented in C. The source codes are run on Intel CORE i7, 8 GB of
RAM. The adjustment of the parameters was done empirically: wp = 0.4, α = 0.9, β = 0.1 and
δ = 1.5. We experimented the benchmarks ms random and ms crafted of the eight MAX-SAT
competition.

Table 1 shows some numerical results found by our approach, where the SAT column corre-
sponds to the number of satisfied clauses. The time limit is 30 seconds for each instance. These
first results are just to show the good behavior of our method which computes good solutions, our
experiments are still in progress and more experiments should be added in the full version of the
paper.

Table 1. The first results obtained by the hyper-heuristic on some instances

The ms random instance The ms crafted instance
variables clauses SAT %satisfied variables clauses SAT %satisfied

150 1350 1332 98.67 40 646 530 82.04
150 1350 1340 99.26 42 474 398 83.97
150 1350 1330 98.52 40 1022 817 79.94
250 1000 978 97.80 42 910 728 80.00
250 1000 972 97.20 43 1212 1013 83.58
250 1000 975 97.50 40 352 300 85.23
250 1000 964 96.40 140 1258 1088 86.49
300 1200 1165 97.08 140 1258 1086 86.33
300 1200 1164 97.00 140 1258 1070 85.05
300 1200 1169 97.41 140 1258 1080 85.85
300 1200 1163 96.92 140 1258 1085 85.25
300 1200 1166 97.17 140 1258 1071 85.13
300 1200 1171 97.58 140 1260 1073 85.16
300 1200 1172 97.67 140 1260 1077 85.48
300 1200 1167 97.25 140 1260 1080 85.71
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