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1 Introduction

Many problems in applied mathematics lead to ordinary differential equation. This work presents
a novel numerical Differential Equation method based en Particle Swarm Optimization (PSO).
Let f = f(x, y) be a real-valued function of two real variables defined for a ≤ x ≤ b , where a and
b are finite, and for all real values of y . The equations

y′(x) = f(x, y) with y(a) = y0 (1)

is called an initial-value problem (IVP); it symbolizes the following problem: To find a function
y(x), continuous and differentiable for x ∈ [a, b] such that y′ = f(x, y) from y(a) = y0 for all
x ∈ [a, b] [1]. One does not construct a closed-form expression for the desired solution y(x) this
is not even possible, in general, but in correspondence to certain discrete abscissa xk, k = 0, ..., n,
one determines approximate values yk for the exact value y(xk).

2 Problem Formulation

The main idea behind the algorithm is to use the following approximate formula for the derivative:

y′(xi) ≈ y′(xi−1 + h
2 ), and from equation (1) we obtain, y(xi)−y(xi−1)

h
≈ f(xi−1, y(xi−1 + h

2 )),

or y(xi−1 + h
2 ) ≈ y(xi−1) +

h
2 f(xi−1, yi−1), Thus, yi−yi−1

h
≈ f

(

xi−1, yi−1 + h
2 f(xi−1, yi−1)

)

.

Consequently, we have to consider the error formula:

[

yi−yi−1

h
− f

(

xi−1, yi−1 +
h
2 f(xi−1, yi−1)

)]2

The performance function, associated to an individual y = (y1, y2, ..., yn) will be:

E(y) =

n
∑

i=1

[

yi − yi−1

h
− f

(

xi−1, yi−1 +
h

2
f(xi−1, yi−1)

)]2

(2)

The proposed method consists to calculate the minimum of equation (2) with Particle Swarm
Optimization, and then permits to avoid accumulated errors.

The particle swarm treatment supposes a population of individuals designed as real valued vec-
torsparticles, and some iterative sequences of their domain of adaptation must be established. It
is assumed that these individuals have a social behavior, which implies that the ability of social
conditions, for instance, the interaction with the neighborhood, is an important process in success-
fully finding good solutions to agiven problem.
The strategy of the PSO algorithm is summarized as follows: We assume that each agent (particle)
i can be represented in a N dimension space by its current position Xi = (xi1, xi2, · · · , xiN ) and
its corresponding velocity vi = (vi1, vi2, · · · , viN ). Also a memory of its personal (previous) best
position is represented by pi = (pi1, pi2, · · · , piN ), called (pbest), the subscript i range from 1 to
s, where s indicates the size of the swarm. Commonly, each particle localizes its best value so far
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(pbest) and its position and consequently identifies its best value in the group (swarm), called also
(sbest) among the set of values (pbest). The velocity and position are updated as:

vk+1
ij = wijv

k
ij + c1r

k
1 [(pbest)

k
ij − xk

ij ] + c2r
k
2 [(sbest)

k
ij − xk

ij ] . (3)

xk+1
ij = vk+1

ij + xk
ij . (4)

where xk+1
i , vk+1

i are the position and the velocity vector of particle i respectively at iteration k+1,
c1 and c2 are acceleration coefficients for each term exclusively situated in the range of 2−−4, wj

is the inertia weight with its value that ranges from 0.9 to 1.2, where as r1, r2 are uniform random
numbers between zero and one. For more details, the double subscript in the relations ( 3) and ( 4)
means that the first subscript is for the particle i and the second one is for the dimension j.

We used the above algorithm for the equation y′ = 1− y(x) from y(0) = 0, in order to find an
approximate solution y : [0 4] 7→ R.

The figure 1 illustrate the PSO solution obtained with h = 1.0 is much more accurate than the
Euler solution with the same h. For h smaler, we obtain impressive results.
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Fig. 1. Analytical/Numerical solutions by Euler and PSO method, with comparison
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