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1 Introduction

In biology, the subject of protein structure prediction is of continued interest, not only to keep
charting the molecular map of the living cell, but also to design proteins with new functions. Given
a reference protein and its corresponding tertiary (3D) structure, this work is concerned with
finding 1) the most diverse nucleotide sequences which 2) produce very similar 3D structures.
This task is different from conventional 3D prediction seeking to predict the structure of one given
sequence. In order to efficiently evaluate the protein structure similarity objective we introduce
a fast evaluation method based on an approximate prediction of its secondary structure. This
permits to use a Genetic Algorithm (GA) to efficiently probe the enormous search space of possible
sequences. Since we are additionally interested in finding as many different sequences as possible,
we use the diversity-as-objective (DAO) approach [2] to push the algorithm farther into wide-
spread areas of the solution-space. The problem is consequently bi-objective and tackled with a
Multi-Objective GA (MOGA). To circumvent the possible dominance of the diversity objective over
the similarity objective, the Quantile Constraint (QC) is introduced in which the worse quantile
of the population in terms the similarity objective is penalized. The efficiency of this MOGA is
experimentally demonstrated using a a reference protein, i.e. 256b, which consists of 106 amino-
acids packed into 4 main helices.

2 Protein Structure Similarity Problem

Every protein is uniquely defined by its RNA/DNA code of length N which determines the amino
acid sequence, A = {aai} where 1 ≤ i ≤ N . This sequence will result in a folding of the chain
into a three-dimensional structure composed of alpha-helices and beta-sheets among others. The
segmentation of these structure components along the sequence is defined as the secondary struc-
ture, hence a close relation between secondary and tertiary structures exists. With the PROFphd
software [1], the secondary structure type Tpred(i) can be predicted per amino acid aai in A with
a reliability, Rpred(i) ∈ {1...10} by means of posterior neural network training. With Tref (i) the
actual type found at position i of the reference secondary structure, the estimated similarity ob-
jective score of the sequence A, Fsec(A), is the sum of the (mis)matches between the secondary
structure types predicted for A and the reference secondary structure:

Fsec(A) =

N∑
i=1

M(Tpred(i), Rpred(i), Tref (i)) . (1)

where

M(Tpred(i), Rpred(i), Tref (i)) =

 0 if Tpred(i), Tref (i) /∈ {H,E}
−Rpred(i) if Tpred(i) = Tref (i)
Rpred(i) if Tpred(i) 6= Tref (i)
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As stated, biologists are not only looking for a few very good solutions wrt. Fsec(A) but rather
for a large diverse collection of good solutions. An effective and simple measure of the distance
between two sequences is the Hamming-distance, defined as the number of permutations necessary
to change one sequence into the other. With A = {aai}, A′ = {aa′i} and 1 ≤ i ≤ N , we define the
Hamming distance between them as:

dHamm(A,A′) =

N∑
i=1

di, di =

{
0 if aai = aa′i
1 otherwise

. (2)

To obtain a non-negative diversity objective value for minimisation, we compute the average
Hamming distance to all other M − 1 individuals in the current population, minus the sequence
length N . For the diversity objective we have:

Fdiv(A) = N − 1

M − 1

M−1∑
i=1

dHamm(A,Ai) . (3)

3 Quantile Constraint

Initial experiments with protein 256b have shown that the dual-objective approach delivers a
constantly very high population-diversity of about 90%, but in terms of Fsec(A), a conventional
single objective GA was able to outperform it though with diversity dropping below 30%. To remedy
this issue, and focus the MOGAs search on the main similarity objective, Fsec(A), we introduce the
Quantile Constraint (QC). At the end of every generation, the population Pt is divided according
to Fsec(A) into a Cq% and a 100 − Cq% sized partition, with Cq being the selected quantile size.
All individual sequences in the former, less fit, partition are assigned a constraint penalty. This
penalty effectively prevents the less fit partition from mating, hence the population is cleaned from
individuals far spread in the solution space, but with a poor Fsec(A) score. Experiments have been
conducted using Cq ∈ {5%, 10%, 25%} constraint thresholds.

4 Conclusion

In this paper we have presented a new approach to studying the relation between protein sequences
and their resulting 3D structure as a first step in a possible way of conducting future protein design.
By defining the task of finding highly diverse sequences with most similar structures we have been
able to model it as an two-objective optimisation problem. We show that we are able to find many
highly varying protein sequences which score better than the reference protein in terms of the
secondary structure prediction. This applies to almost two thirds of individual sequences in the
final population of the MOGA, which make them interesting for further studies. By adding the
Quantile Constraint (QC) approach we are able to shift the focus arbitrarily between the diversity-
and similarity-objectives (Fdiv(A) and Fsec(A)), and to obtain better results than a standard single
objective GA on Fsec(A), while keeping a much higher diversity. In addition, the convergence of
Fsec(A) was observed as being steeper than the standard GA which promises very good solutions
given a high evaluation budget.
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