Performance tuning of applications in HPC environments
employing Simulated Annealing

Valentin Plugaru, Sébastien Varrette, and Pascal Bouvry

Computer Science and Communications (CSC) Research Unit,
6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
Valentin.Plugaru@gmail.com Sebastien.Varrette@uni.lu Pascal.BouvryQuni.lu

1 Introduction

Obtaining the best possible speed and efficiency is the main focus in High Performance Computing
(HPC) environments where the current challenge is reaching the exaflop barrier as well as offering
the computational capacity of Exascale systems, at a reduced power cost. Optimization approaches
focus on developing increasingly efficient architectures and power management systems while faster
executions are obtained by increases in hardware clock rates, parallelism and optimized algorithms
working at both hardware and software level. Applications are generally optimized by profiling,
with performance tuning applied at computationally expensive spots.

Building fast software in an HPC environment raises great challenges as the software used for
simulation and modelling is generally complex and has many dependencies. Current approaches in-
volve manual tuning of compilation parameters in order to minimize the run time, based on a set of
predefined defaults, however this requires expert knowledge, is not scalable and can be very expen-
sive in person-hours. Another approach, explored in the present work, is optimization by traversing
the search space given by the compiler-level heuristics, which can be activated through specific flags,
and the library compile-time options that perform internal tuning and architecture-specific opti-
mizations in order to achieve better application performance. A well-known compile-time tuning
system that produces platform-optimized library builds is ATLAS: Automatically Tuned Linear
Algebra Software, a code generation system targeting optimal BLAS and LAPACK routines, while
metaheuristics-based compiler flag selection have been explored by Hoste and Eeckhout [1] and
Zhong et al. [2].

The present work builds on the existing concepts, proposing and developing a modular and
generic framework called POHPC that uses a Simulated Annealing (SA) metaheuristic algorithm
to automatically search for the optimal set of both library options and compilation flags that can
give the best execution time for a library-application pair on a selected hardware architecture
without changing the software internals. The framework can be used in modern HPC clusters
using a variety of batch scheduling systems as execution backends for the optimization runs, and
will discover optimal combinations as well as invalid sets of options and flags that result in failed
builds or application crashes through executions with real world test cases. We demonstrate the
optimization of the FFTW library working in conjunction with the high-profile community codes
GROMACS and QuantumESPRESSO (QE), whereby the suitability of the technique is validated.

2 The poHPC framework

The POHPC framework, presented in Figure 1 is composed of four modules: the POHPC core, the
Optimization engine, Fitness evaluator and Job management.

The POHPC core is the main user application, utilizing specific classes defined in the other
modules based on user’s selection of application/library pair to be optimized, and configuration
parameters specified in several manifest files. The libraries and compilers manifest files contain lists
of compilation parameters particular to each configured library (e.g. for FFTW: --enable-sse2,
--enable-avx, --enable-float, --enable-long-double), respectively compiler-specific opti-
mization flags (e.g. for GCC: -00 ...-03, -0fast, -funroll-loops, -fvect-cost-model,
-ftracer, -mssse3, -msse4.2, —mavx).

The Optimization engine is the module meant to implement different optimization algorithms
in order to allow maximum flexibility in choosing an appropiate one based on the user’s needs,
considering the accuracy /performance tradeoffs inherent in algorithms and the available resources.

2 V. Plugaru, S. Varrette and P. Bouvry

Application specific Cluster frontend

—~
Simulated annealing (

poHPC framework (Python)
|

Fitness evaluation
Optimization

ob Management oHPC A
J ® > engine Job submission Library EasyConfig
and monitoring modifications

poHPC started
with user selected
application and library

Optimization engine Select step:
H‘”‘e”‘a' It]—» initialization, internal » Compiler flags

0AR

PBS

GridEngine

LoadLeveler

SLURM ;
with manifest data ™ o tion representation | | Library options

DRMAA (API)

New directory created with:
- Library EasyConfig

- Application test script
- Test input files

- Job script

Manifests (YAML format: Tests

i
) ‘ :
i Compute node i{ Cluster frontend
" Job script run i
o9 o9 o9 o9 i k _ Multiple iterations i
: : - EasyBuild system loaded (set in test script) il | Acceptance ||
- <
i
i - Environment stored Test script execution: i O
i " - 4 f - Creation of directory with test files | ij ~———1
{1 Testscripts Inputfiles - Library build (EasyBuild) Optimized application launch iy
- — - i Shell) (Application - Application build (EasyBuild) Fitness
POHL Applications Libraries Compilers ! ; (Pp!
P
P

ifi evaluation
specific format) - Application test script start

i

Fig. 1: The pOHPC framework: architecture (left) and workflow in a HPC environment (right).

Several metaheuristics algorithms can be used to perform combinatorial optimization, such as Tabu
Search, Simulated Annealing or population-based Evolutionary Algorithms. In the present work
a SA algorithm has been implemented as a class of the optimization engine. For POHPC the SA
algorithm has been chosen instead of a simple Random Search as better solutions may be found
in the immediate neighbourhood of a known good solution. As an example the -O8 compiler flag
should result in better performing code than when using the -O2 flag, with the solution containing
the former being in close proximity to the latter, all other parameters being the same. However,
the choice of -08 may have the consequence of producing an inviable application due to aggresive
optimization by the compiler thus the search space cannot be reduced to configurations containing
only -03. Also, compared to population-based optimization approaches, SA needs to evaluate only
one solution’s cost per iteration which makes it much more efficient, as computing the cost is very
expensive due to the long time (at least on the order of minutes) required in order to compile the
library, application and run representative test cases with the application.

The Fitness evaluator module contains application-specific classes that are able to parse output
files, extract and aggregate the required information that ultimately serves as the cost function
(fitness) value, to be minimized by the optimization module. For the current work, fitness evaluat-
ing classes have been developed for the QuantumESPRESSO and GROMACS applications - well
known simulation packages for quantum chemistry, respectively molecular dynamics.

Finally, the Job management module is intended for classes that are specific to the Batch Job
Scheduler systems commonly in use in HPC clusters such as Torque/PBS, GridEngine, LoadLeveler
and OAR. OAR-specific functionality has been implemented, allowing the submission, monitoring
the status and waiting for the termination of a batch job executed under the Batch Scheduler in
use at the HPC Platform of University of Luxembourg, utilized in this study.

3 Experimental results

Several sets of experiments have been performed with the POHPC framework for the optimization
of QuantumESPRESSO and GROMACS applications on real-world test cases involving FFT-
intensive calculations. Sample optimization results for QuantumESPRESSO/FFTW are presented
in Table 1, showing the best solution performing 36.7% better (less time spent in fftw routines as
measured by QE) than with compilation defaults, when the SA algorithm was executed with a
mode of operation that generated close neighbourhoods for the accepted solution.

Application Compiler flags FFTW library options|Gain over defaults
QE -O1 -msse3 —enable-sse2 18.3%
QE[-O1 -funroll-loops -fvect-cost-model -ftracer -mavx —enable-sse2 36.7%

Table 1: Sample optimized solutions found by POHPC for QuantumESPRESSO.

References

1. HosTE, K., AND EECKHOUT, L. Cole: compiler optimization level exploration. In CGO (2008), M. L.
Soffa and E. Duesterwald, Eds., ACM, pp. 165-174.

2. ZHONG, S., SHEN, Y., AND HAo, F. Tuning compiler optimization options via simulated annealing.
In Proceedings of the 2009 Second International Conference on Future Information Technology and
Management Engineering (2009), FITME 09, pp. 305-308.

