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1 Introduction

Datacenters are typically composed by a huge number of computational resources, including high
performance clusters, large storage systems, and/or components of large grids or cloud systems [1].
This extended abstract presents two novel two-level algorithms for scheduling a large number of
workloads in a heterogeneous distributed system composed of multi-core processors. In the higher-
level (i.e., between distributed systems), our schedulers implement either the traditional Round
Robin (RR) and Load Balancing (LB) techniques to distribute the workflows. In the lower-level
(i.e., within each datacenter), we propose a novel scheduler technique, based on HEFT and using
backfilling, to schedule the locally assigned workflow using the available local resources.

We propose in Section 2 a novel formulation of the problem, and we evaluate the two proposed
schedulers according to three different metrics (described in Section 3), as the makespan, the
energy consumption of the datacentres to execute all tasks, and the penalization due to violated
deadlines. The schedulers used are explained in Section 4, and some interesting results we found
in our experimentations are outlined in Section 5.

2 Problem Definition

Our problem is to schedule large workloads of n independent heterogeneous jobs J = {j0, j1, . . . , jn}
on a set of k heterogeneous computing nodes CN = {CN0, CN1, . . . , CNk}. We define:
– Each computing node CNr is a collection of NPr multicore processors (NPr may be differ-

ent for every CNr). It is represented as a tuple (opsr, cr, E
r
IDLE, E

r
MAX , NPr) defining the

performance of its composing processors in terms of the floating-point operations per second
(FLOPS) they can process, their number of cores and energy consumption at idle and peak
usage, as well as the number of processors composing it, respectively.

– Each job jq is a parallel application that is decomposed into a set of tasks Tq = {tq0, tq1, . . . tqm}
with dependencies among them, typically having each task different computing requirements.

– Every job jq has an associated deadline Dq before it must be accomplished.
– Each task tqα is a duple tqα = (oqα, ncqα) containing its length oqα (in terms of its number of

operations), and the number of processors required to execute it in parallel, ncqα.
We represent every job as a Directed Acyclic Graph (DAG). It is a precedence task graph

jq = (V,E), where V is a set of m nodes, each one corresponding to the task tqα (0 ≤ α ≤ m) of
the parallel program jq. E is the set of directed edges between the tasks that maintain a partial order
among them. Let ≺ be the partial order of the tasks in G, the partial order tqα ≺ tqβ models the
precedence constraints. That is, if there is an edge eαβ ∈ E then task tqβ cannot start its execution
before task tqα completes. We consider negligible communication costs, as communications only
happen between servers within the same CN.

3 Performance Metrics

We consider several performance metrics to evaluate the solution quality of each algorithm:

– Makespan, defined as the maximum completion time of the computing nodes.
– Energy consumption, defined as the energy required to compute all tasks. It is computed

following the model by Nesmachnow et al. in [2].
– Cost due to penalizations. Every workflow has a deadline before it should be completed and

a penalty function to apply when it is violated. If the deadline is respected, the cost for that
application is 0, in other case it can be either

√

Dq − Fq, Dq − Fq, or (Dq −Fq)
2 (where Fq is

the time when task q is finished), and it is specified by the problem instance for every workflow.
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4 Schedulers

As mentioned, we propose two different classic methods for the high-level scheduler, and a novel
method for the low-level. For the high-level, we use RR and LB techniques. On the one hand, RR
iteratively assigns every job to the next computing node. If the job can not be executed in the
selected computing node (because some task in it requires more cores than the number of cores of
the servers in the computing node), then the heuristic continues the iteration to the next ones until
a suitable computing node is found. On the other hand, LB adjusts the number of jobs assigned
to every computing node. Jobs are ordered according to the number of cores they require. The
number of cores a job requires is defined as the maximum number of cores demanded by any of its
tasks. Then, the jobs with higher cores requirements are assigned first. They are allocated to the
computing node with the lowest number of jobs assigned, among those than can execute it.

The proposed low-level scheduling heuristic is based on the Heterogeneous Earliest Finish Time
(HEFT) strategy [3], but it uses a backfilling technique and adapts the logic to work with multicore
computing resources, by taking into account the “holes” that appear when a specific computing
resources is not fully used by a single task (i.e., because the task only requires a part of the available
cores in the machine). It sorts the tasks according to the upward rank values, then gives priority
to assign the tasks to existing holes rather than using empty machines in the CN. When a given
task fits on more than one hole, the heuristic selects the hole that “best fit” the task (i.e. the
hole that minimizes the difference between the hole duration and the time to compute the task),
disregarding the finishing time of the task. When no hole is available to execute the task, the
heuristic selects the machine with the minimum finishing time for the task. The machines (and
also machine holes) within the CN are processed sequentially and ordered (from machine #0 to
machine #M). The rationale behind this strategy is to use available holes and left unoccupied large
holes and empty machines for upcoming tasks. Ties between holes as well as between machines are
decided lexicographically, as the method searches sequentially (in order) both holes and machines.

5 Experimental Results

We analyzed the behavior of the two algorithms in 25 instances that are composed by 1, 000
workflows of different characteristics, as well as single tasks. The values used to characterize the
processors are real ones taken from the current market. Table 1 presents the average performance
difference (in %) for makespan (fM ) energy (fE) and penalizations’ cost (fC) of every algorithm
with respect to the best result for every instance. Sched1 is the method using RR in the higher
level, while Sched2 uses LB technique. We can see that Sched1 clearly outperforms Sched2 in
terms of makespan, energy, and cost, meaning that the RR technique distributes more effectively
the workflows among the different clusters. In Fig. 1, we can see that Sched1 provides solutions
of around 20% better makespan with 17% lower energy requirements for instance 1, which is a
representative case.

Table 1: Average performance difference (in %) for
makespan (fM ) energy (fE) and penalizations’ cost
(fC) of every algorithm with respect to the best result
for every instance.

Algorithms fM fE fC
Sched1 0.8 0.8 0.2

Sched2 11.9 8.9 13.8
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Fig. 1: Energy and makespan values pro-
vided by the algorithms on a representative
case
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