Parameter selection in VNS for the k-labelled spanning
forest problem
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1 Introduction

A graph whose edges are labelled represents a Multimodal Transportation Networks where each
label denotes a different company managing that link. In multimodal transportation it is desir-
able to guarantee a complete connection between the terminal nodes of the network by using the
minimum number of provider companies [1]. The purpose is to minimize the cost and the overall
complexity of the network. In real-world applications it is interesting to optimize this factor with
an upper bounds on the number of transportation providers available [2]. This is the k-labelled
spanning forest (KLSF) problem that has been shown NP-hard [3] and therefore any practical
solution approach requires heuristics.

The KLSF problem can be formalized as follows. Let G = (V, E, L) be a labelled, undirected
graph, where V is the set of vertices or nodes, F the set of edges or links, that are labelled on the
set L of labels, and let k be a positive integer. The problem consists in finding a subgraph S of
G with no more than k labels minimizing the number of connected components of S. The kLSF
problem is a generalization of the MLST problem which consists in finding the spanning tree of
the graph with the minimum number of labels [4]. Moreover, a solution to the MLST problem is
a solution also to the kKLSF problem if the solution tree has not more than k labels. Therefore
solution approaches to the kLSF problem can be based in MLST heuristics. Several metaheuristics
have been applied to the MLST problem in [5,7,6,8-11]. In this paper we consider the application
of VNS metaheuristic for the kLSF and the selection of the values for its parameters in order to
get the best performance.

2 VNS for the KLSF problem

The key idea of Variable Neighbourhood Search (VNS) [12] is to define a neighbourhood structure
for the solution space, and to explore different increasingly distant neighbourhoods whenever a
local optimum is reached. Our VNS implementation for the KLSF problem is motivated by the
successful VNS proposed for the MLST problem in [10]. Consider the following notation. Each
solution S of the KLSF is encoded by a binary string S = (I1,1s,...,1,), where I; = 1 if label i
is included in the solution S, and I; = 1 otherwise. Let p(S1,S2) = |S1 — S2| be the Hamming
distance between any two solutions S; and S3. Denoting the gth neighbourhood of a solution S
by Ng(S) ={S" C L:p(S,5") = q}, a set of gmas neighbourhoods (Ny, with ¢ = 1,2, ..., ¢maz) is
selected, where the parameter g¢,,q; is the maximum size of the set of neighbourhood structures.
The value of ¢y, represents an important parameter to tune in VNS in order to obtain an optimal
balance between intensification and diversification capabilities [12].

VNS starts with an initial solution S obtained by adding labels at random from scratch until
k labels are selected. Then the algorithm applies the shaking phase to S. The shake consists in
selecting at random of a solution S’ from the neighbourhood N, (S) of the current solution S. The
parameter ¢ varies from 1 to ¢mas throughout the execution. In order to construct Ny(S), the
algorithm starts by deleting a random labels from S, and then including at random further labels
from the unused set (L — S), if a further expansion of the neighbourhood structure is required
(case ¢ > |9]).
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Then a local search is applied to the incumbent solution S’. The local search tries to drop each of
the labels in S’, and then to add further labels following a greedy rule, until k are reached. After the
local search, if an improvement has not been obtained, the neighbourhood is increased (q < ¢+1).
The process of changing the neighbourhood structure when the local search is trapped at a local
minimum represents the core idea of VNS and provides an increased progressive diversification.
Otherwise, if an improvement is obtained, the algorithm moves to the improved solution (S « S’)
and restarts the shaking with the smallest neighbourhood (¢ < 1). This procedure is repeated
until the predetermined stopping conditions are reached, providing the best solution S.

3 Experimental results

We run the experiments to analyse the performance with different values for ¢, on 8 dif-
ferent datasets having numbers of vertices |V| € {100,200}, number of labels |L| = «|V] for
alpha € {0.25,0.5,1,1.25}, and edges |E| = |V|(]V| — 1). For each combination of |V| and |L|, 10
different problem instances were considered, for a total of 80 instances. Following [3], the parame-
ter k was determined as [|V|/27 ], where j is the smallest value such that the generated instances
did not report a single connected solution when solved with the MVCA heuristic for the MLSTP.
The Maximum Vertex Covering Algorithm (MVCA) is a polynomial time heuristic for the MLST
problem proposed in [4] and successively improved in [13]. For each dataset, solution quality is
evaluated as the average number of connected components among the 10 problem instances. A
maximum allowed CPU time was chosen as stopping condition for all the parameter setting, de-
termined experimentally with respect to the dimension of the considered datasets. The objective
of the experiments is to test three different strategies for selecting ¢,,q4.. These strategies consist
of giving t0 ¢maz a fix value for for all the instances, a value proportional to the label set size |L]|
and a value proportional to the solution size |S|. The experiments show the superiority of applying
the rule gmaz = 4/3|S] used in [10] for the MLST problem.
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