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1 Introduction

A graph whose edges are labelled represents a Multimodal Transportation Networks where each
label denotes a different company managing that link. In multimodal transportation it is desir-
able to guarantee a complete connection between the terminal nodes of the network by using the
minimum number of provider companies [1]. The purpose is to minimize the cost and the overall
complexity of the network. In real-world applications it is interesting to optimize this factor with
an upper bounds on the number of transportation providers available [2]. This is the k-labelled
spanning forest (kLSF) problem that has been shown NP -hard [3] and therefore any practical
solution approach requires heuristics.

The kLSF problem can be formalized as follows. Let G = (V,E,L) be a labelled, undirected
graph, where V is the set of vertices or nodes, E the set of edges or links, that are labelled on the
set L of labels, and let k̄ be a positive integer. The problem consists in finding a subgraph S of
G with no more than k̄ labels minimizing the number of connected components of S. The kLSF
problem is a generalization of the MLST problem which consists in finding the spanning tree of
the graph with the minimum number of labels [4]. Moreover, a solution to the MLST problem is
a solution also to the kLSF problem if the solution tree has not more than k̄ labels. Therefore
solution approaches to the kLSF problem can be based in MLST heuristics. Several metaheuristics
have been applied to the MLST problem in [5, 7, 6, 8–11]. In this paper we consider the application
of VNS metaheuristic for the kLSF and the selection of the values for its parameters in order to
get the best performance.

2 VNS for the kLSF problem

The key idea of Variable Neighbourhood Search (VNS) [12] is to define a neighbourhood structure
for the solution space, and to explore different increasingly distant neighbourhoods whenever a
local optimum is reached. Our VNS implementation for the kLSF problem is motivated by the
successful VNS proposed for the MLST problem in [10]. Consider the following notation. Each
solution S of the kLSF is encoded by a binary string S = (l1, l2, ..., ln), where li = 1 if label i
is included in the solution S, and li = 1 otherwise. Let ρ(S1, S2) = |S1 − S2| be the Hamming
distance between any two solutions S1 and S2. Denoting the qth neighbourhood of a solution S
by Nq(S) = {S′ ⊆ L : ρ(S, S′) = q}, a set of qmax neighbourhoods (Nq, with q = 1, 2, ..., qmax) is
selected, where the parameter qmax is the maximum size of the set of neighbourhood structures.
The value of qmax represents an important parameter to tune in VNS in order to obtain an optimal
balance between intensification and diversification capabilities [12].

VNS starts with an initial solution S obtained by adding labels at random from scratch until
k̄ labels are selected. Then the algorithm applies the shaking phase to S. The shake consists in
selecting at random of a solution S′ from the neighbourhood Nq(S) of the current solution S. The
parameter q varies from 1 to qmax throughout the execution. In order to construct Nq(S), the
algorithm starts by deleting a random labels from S, and then including at random further labels
from the unused set (L − S), if a further expansion of the neighbourhood structure is required
(case q > |S|).
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Then a local search is applied to the incumbent solution S′. The local search tries to drop each of
the labels in S′, and then to add further labels following a greedy rule, until k̄ are reached. After the
local search, if an improvement has not been obtained, the neighbourhood is increased (q ← q+1).
The process of changing the neighbourhood structure when the local search is trapped at a local
minimum represents the core idea of VNS and provides an increased progressive diversification.
Otherwise, if an improvement is obtained, the algorithm moves to the improved solution (S ← S′)
and restarts the shaking with the smallest neighbourhood (q ← 1). This procedure is repeated
until the predetermined stopping conditions are reached, providing the best solution S.

3 Experimental results

We run the experiments to analyse the performance with different values for qmax on 8 dif-
ferent datasets having numbers of vertices |V | ∈ {100, 200}, number of labels |L| = α|V | for
alpha ∈ {0.25, 0.5, 1, 1.25}, and edges |E| = |V |(|V | − 1). For each combination of |V | and |L|, 10
different problem instances were considered, for a total of 80 instances. Following [3], the parame-
ter k̄ was determined as b|V |/2jc, where j is the smallest value such that the generated instances
did not report a single connected solution when solved with the MVCA heuristic for the MLSTP.
The Maximum Vertex Covering Algorithm (MVCA) is a polynomial time heuristic for the MLST
problem proposed in [4] and successively improved in [13]. For each dataset, solution quality is
evaluated as the average number of connected components among the 10 problem instances. A
maximum allowed CPU time was chosen as stopping condition for all the parameter setting, de-
termined experimentally with respect to the dimension of the considered datasets. The objective
of the experiments is to test three different strategies for selecting qmax. These strategies consist
of giving to qmax a fix value for for all the instances, a value proportional to the label set size |L|
and a value proportional to the solution size |S|. The experiments show the superiority of applying
the rule qmax = 4/3|S| used in [10] for the MLST problem.
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for the minimum labelling Steiner tree problem. Annals of Operations Research, 172 (1) (2009) pp.
71–96.
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