Tuesday 28
Optimization under uncertainty
M. Aider
› 9:20 - 9:40 (20min)
A Multiobjective Memetic Approach to Job-Shop Scheduling under Uncertainty
Thanh-Do Tran  1, 2, *@  , Inés González-Rodríguez  3@  , El-Ghazali Talbi  1, 4@  
1 : DOLPHIN  (INRIA Lille - Nord Europe)
INRIA, CNRS : UMR8022, Université Lille I - Sciences et technologies
2 : Laboratoire d'Informatique Fondamentale de Lille  (LIFL)  -  Website
Université Lille I - Sciences et technologies, CNRS : UMR8022, INRIA
Bâtiment M3 59655 Villeneuve d'Ascq Cédex -  France
3 : Department of Mathematics, Statistics and Computing, University of Cantabria
4 : Laboratoire d'Informatique Fondamentale de Lille  (LIFL)  -  Website
Université Lille III - Sciences humaines et sociales, Université Lille I - Sciences et technologies, CNRS : UMR8022, INRIA
Bâtiment M3 59655 Villeneuve d'Ascq Cédex -  France
* : Corresponding author

This paper presents a multiobjective Lamarckian memetic approach to fuzzy job-shop scheduling. In particular, a specialized local search based on the N2 neighborhood structure is used to improve triangular fuzzy makespans across their three solution graphs in parallel. On the other hand, the NSGA-II is used to further minimize the three defining points of the fuzzy makespans. An extensive experiment was conducted to confirm the superiority of the algorithm compared to both the single-objective memetic and multiobjective genetic methods. A new analysis scheme is also introduced, which shows that regardless of the expert's attitude toward uncertainty quantification, the proposed approach would consistently find statistically better schedules in terms of expected makespan.



  • Other
Online user: 1 RSS Feed